Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бесколлекторные двигатели схемы включения

Двигатель мун 2 схема подключения

Дело в том, что при использовании всей обмотки на постоянном токе двигатель развивает большие моменты и имеет более высокие скорости вращения, чем на переменном.
Объясняется данное явление влиянием на величину и фазу переменного тока индуктивных сопротивлений обмоток якоря и возбуждения. Потери в двигателе на переменном токе больше, чем при постоянном токе. К тому же сюда добавляется искрение в щетках, уровень создаваемых радиопомех, шум электромотора намного ощутимее, чем при работе на постоянном токе.
Объясняется это неблагоприятными условиями ко коммутации из-за наличия в трансформаторной ЭДС. В результате ресурс двигателя значительно снижается.

Чтобы устранить выше упомянутые причины схему включения универсальных электродвигателей МУН-2Е c питанием постоянным током напряжением 220V.
Данный электродвигатель применяется в шахтах и на предприятиях для автоматического взвода высоковольтных ячеек 6 кV на напряжение 110 – 127 V. По предлагаемой ниже схеме переделывается любой коллекторный электродвигатель как постоянного так и переменного тока, применяемые даже в бытовых приборах (пылесосах, стиральных машинах и д.р.)
При разработке схемы ставилось условие простого и плавного изменения оборотов вашего электродвигателя, и легко производить его реверс в обратную сторону.
В результате получилось простое , надежное и компактное устройство с минимумом переделок.

Схема включения универсального электродвигателя МУН-2Е .

Тумблеры S1 и S2 типа ТП-2, диоды VD1-VD4 КД 203А, но их можно заменить любыми другими диодами рассчитанными на прямой ток до 10 А. Диоды VD1VD4 устанавливаются без радиаторов при установке на радиаторы можно поставить диоды и на меньший ток.. Переменный резистор R1 – проволочный с номинальным напряжением от 510 – 650 ом и мощностью 25 вт, этим резистором производится регулировка оборотов электродвигателя без изменения мощности на валу. Если вам не нужно плавное изменение оборотов электродвигателя то вы можете вместо резистора R1 установить галетный переключатель и постоянные проволочные резисторы марки ПЭ-25. Их сопротивления подбирают до желаемого получения количества оборотов электродвигателя на каждую ступень. М1 – электродвигатель МУН-2Е или его модификации. ОВ1 и ОВ2 обмотки возбуждения данного электродвигателя.

Выводы обмоток 1 и 2 включены в диагональ диодного моста, а выводы 3 и 4 не используются. Монтаж данного устройства можно выполнить на изолирующей пластине из текстолита, гетинакса, винипласта. Под двигатель для амортизации установлены резиновые амортизационные подушки. Диоды и тумблеры могут быть закреплены , в любом месте на изолирующем основании из выше перечисленного материала.

Все это позволяет применять данный двигатель для поворота антенны, подъема мачт, ферм антенн и для всех других домашних применений, как намотка катушек для трансформаторов, сверления больших отверстий при использовании в качестве привода сверлильного станка, фрезерования отверстий в дереве, в качестве привода небольшой циркулярной пилы.
Отсюда вывод, когда имеется возможность получать при достаточной мощности двигателя плавное изменение его оборотов, а значит и его нагрузку на валу то в любом месте этот двигатель будет незаменимым вам помощником дома.

Отзыв: Мной был переделан аналогичный двигатель МУН-2, но имеющий не 6 выводов, а 3. Для этого пришлось разбирать электродвигатель и разделять обмотки статора и выводить из электродвигателя 2 дополнительных конца. Переделка показала, что данный электродвигатель можно эксплуатировать, как на переменном так и на постоянном токе при изменении числа оборотов с сохранением режима реверсирования. Электродвигатель использовался мной в качестве привода небольшой лебедки c установленным на ней дополнительным редуктором.

Суть такая, отдали мне двигатель МУН-2, мощностью всего 80 Вт.
Вопрос в том, можно ли из этого двигателя сделать точило или токарный станок по дереву? У двигателя 2600 об/мин.

Бесколлекторные двигатели схемы включения

Запись от AZM на субдомене electronics-and-mechanics
Все записи на субдомене: Электроника и механика (записки от AZM)

Общие сведения о двигателях от HDD, CD-ROM, DVD-ROM


Двигатель, вращающий шпиндель жесткого диска (или CD/DVD-ROM)- это синхронный трёхфазный мотор постоянного тока.
Раскрутить такой двигатель можно подключив его к трём полумостовым каскадам, которые управляются трёхфазным генератором, частота которого при включении очень мала, а затем плавно повысится до номинальной. Это не лучшее решение задачи, такая схема не имеет обратной связи и следовательно частота генератора будет повышаться в надежде, что двигатель успевает набрать обороты, даже если на самом деле его вал неподвижен. Создание схемы с обратной связью потребовало бы применения датчиков положения ротора и несколько корпусов ИМС не считая выходных транзисторов. CD/DVD-ROM уже содержат датчики холла, по сигналам которых можно определить положение ротора двигателя, но иногда, совсем не важно точное положение и не хочется впустую тянуть «лишние провода».
К счастью, промышленность выпускает готовые однокристальные драйверы управления, которым к тому же им не требуются датчики положения ротора, в роли таких датчиков выступают обмотки двигателя.

Микросхемы управления трёхфазными двигателями постоянного тока, которым не требуются дополнительные датчики (датчиками являются сами обмотки двигателя):
LB11880; TDA5140; TDA5141; TDA5142; TDA5144; TDA5145.
Есть и некоторые другие, но почему-то их нет в продаже, там, где я искал, а ждать от 2 до 30 недель заказа я не люблю.

Принципиальная схема подключения двигателя к микросхеме LB11880

Изначально, эта микросхема предназначена для управления двигателем БВГ видеомагнитофонов, так что она старенькая, в ключевых каскадах у неё биполярные транзисторы а не MOSFET`ы.
В своих конструкциях, я использовал именно эту микросхему, она во-первых, оказалась в наличии в ближайшем магазине, во-вторых, её стоимость была ниже, чем у прочих микросхем из списка выше.
Собственно, схема включения двигателя:

Если ваш двигатель имеет не 3 а 4 вывода, то подключать его следует согласно схеме:

Немного дополнительной информации об LB11880 и не только

Двигатель, подключенный по указанным схемам будет разгоняться до тех пор, пока либо не наступит предел по частоте генерации VCO микросхемы, которая определяется номиналами конденсатора подключенного к выводу 27 (чем его ёмкость меньше, тем выше частота), либо двигатель не будет разрушен механически.
Не следует слишком уменьшать ёмкость конденсатора подключенного к выводу 27, так как это может затруднить пуск двигателя.

Как регулировать скорость вращения?
Регулировка скорости вращения производится изменением напряжения на выводе 2 микросхемы, соответственно: Vпит — максимальная скорость; 0 — двигатель остановлен.
Однако, необходимо отметить, что плавно регулировать частоту просто применив переменный резистор не удастся, так как регулировка не линейна и происходит в меньших пределах чем Vпит — 0, по этому лучшим вариантом будет подключение к этому выводу конденсатора на который через резистор, например от микроконтроллера подаётся ШИМ сигнал.
Для определения текущей частоты вращения следует использовать вывод 8 микросхемы, на котором при вращении вала двигателя присутствуют импульсы, по 3 импульса на 1 оборот вала.

Как задать максимальный ток в обмотках?
Известно, что трёхфазные двигатели постоянного тока потребляют значительный ток вне своих рабочих режимов (при питании их обмоток импульсами заниженный частоты).
Для выставления максимального тока в данной схеме служит резистор R1.
Как только падение напряжения на R1 и следовательно на выводе 20 станет более 0.95 вольта, то выходной драйвер микросхемы прерывает импульс.
Выбирая значение R1, учитывайте, что для данной микросхемы максимальный ток не более 1.2 ампера, номинальный 0.4 ампера.

Параметры микросхемы LB11880
Напряжение питания выходного каскада (вывод 21): 8 . 13 вольт (максимально 14.5);
Напряжение питания ядра (вывод 3): 4 . 6 вольт (максимально 7);
Максимальная рассеиваемая микросхемой мощность: 2.8 ватта;
Диапазон рабочих температур: -20 . +75 градусов.

Как подключить асинхронный движок

Другим довольно-таки распространённым типом электродвижка является асинхронный двигатель. Наиболее часто его устанавливают в вентиляторах. Если известно, что движок именно оттуда, скорее всего он сконструирован на несколько скоростей. Об этом будут свидетельствовать несколько дополнительных выводов, которые являются ответвлениями основной обмотки статора. В движке, который рассчитан на работу с одной скоростью обмоток две. Поэтому в нём возможны ответвления от обмоток либо как 3, либо как 4 вывода. При трёх выводах обмотки уже соединены последовательно. При четырёх выводах надо разобраться с ними используя тестер.

Обмотки обеспечивают перемещение магнитного поля в пределах 90 градусов. Дополнительная обмотка используется для создания перемещающегося максимума магнитного поля и называется пусковой обмоткой. Поэтому если выводов 3 или больше всегда можно определить, используя тестер, где какая из них. Обмотка как пусковая, так и переключающая обороты имеют более высокое сопротивление. Для подключения асинхронного электродвигателя на 220 Вольт применяются схемы, показанные далее.

В некоторых моделях движков резистор встраивается в корпус и поэтому в них только два вывода. Такой двигатель должен вращаться сразу при подаче напряжения 220 В на эти обмоточные выводы. Но если этого не происходит, а тестер показывает некоторое значение сопротивления, значит, одна из обмоток оборвана. Такой движок уже никак не используешь без ремонта в виде перемотки повреждённой обмотки. Использование конденсатора для получения перемещающего магнитного поля является самым популярным техническим решением. Если необходимо таким способом подключить движок потребуется величина его мощности.

  • Конденсатор для асинхронного двигателя выбирается по мощности. Для каждых ста Ватт мощности движка надо примерно семь микрофарад ёмкости конденсатора.

Похожие статьи

Развитие электроприводостроения для железнодорожных.

Стрелочный электропривод — электромеханический переводной механизм, применяемый на железнодорожном транспорте при электрической, диспетчерской и горочной централизациях.

Тяговый асинхронный электродвигатель для мотор-колёс.

Моделирование электропривода на базе бесконтактного двигателя.

Моделирование моментов нагрузки электродвигателей в MATLAB. Моделирование САР скорости асинхронного двигателя с переменными ΨR — IS в системе абсолютных единиц в Matlab-Script.

Исследование параметров управляющего устройства.

Исследование параметров управляющего устройства двухдвигательного электропривода переменного тока.

Разработана система управления двухдвигательным асинхронным электроприводом с системой «преобразователь частоты — асинхронный двигатель».

Выбор системы управления двигателем электромобиля

электродвигатель; ‒ питающая аккумуляторная батарея; ‒ упрощенная трансмиссия, оснащенная одноступенчатым редуктором

Скалярное управление или как его еще называют частотное, так как этот метод управления электродвигателем переменного тока заключается.

Выбор системы возбуждения тяговых электрических двигателей.

I — ток двигателя, А; V — скорость тепловоза, км/ч.

Плакс, А. В. Системы управления электрическим подвижным составом: учебник для студентов вузов железнодорожного транспорта по специальности «Электрический транспорт железных дорог»: рекомендовано.

Повышение эффективности электрифицированного.

Ведь для питания двигателей постоянного тока или асинхронных двигателей напряжение должно быть понижено. В случае если на ЭПС установлены асинхронные электродвигатели, необходимо использовать импульсный преобразователь (ИП).

Модернизация схемы испытания тяговых двигателей постоянного.

Поэтому вентильный двигатель можно изучать как синхронный электродвигатель с переменной частотой питания статорных обмоток, аналогично частоте

rд = 0,082 Ом — сопротивление обмоток ТЭД типа ЭД-125; I — ток двигателя, А; V — скорость тепловоза, км/ч.

Модернизированная схема испытаний асинхронных тяговых.

Тяговый электродвигатель (ТЭД) служит для преобразования электрической энергии, получаемой из контактной сети или от дизель-генераторной установки, в

Каждый инвертор АИН1, АИН2, клеммами переменного тока подключен к обмотке своего двигателя АМ1, АМ2.

Перспектива применения электродвигателей в автомобилях

внутреннее сгорание, электродвигатель, электромобиль, автомобиль, двигатель, переменный ток, щеточно-коллекторный узел, магнитное поле статора, возможность регенерации энергии торможения, XIX-XX.

Датчики положения

Устройство двигателей без датчиков отличается от двигателей с датчиками только отсутствием последних. Других принципиальных отличий нет. Наиболее распространены датчики положения, работающие на основе эффекта Холла. Датчики реагируют на магнитное поле, их располагают, как правило, на статоре таким образом, чтобы на них воздействовали магниты ротора. Угол между датчиками должен быть 120 градусов.

Имеется в виду «электрических» градусов. Т.е. для многополюсного двигателя физическое расположение датчиков может быть таким:

Иногда датчики располагают снаружи двигателя. Вот один из примеров расположения датчиков. На самом деле это был двигатель без датчиков. Таким простым способом его оснастили датчиками холла.

На некоторых двигателях датчики устанавливают на специальном устройстве, которое позволяет перемещать датчики в определенных пределах. С помощью такого устройства устанавливается угол опережения (timing). Однако, если двигатель требует реверса (вращения в обратную сторону) потребуется второй комплект датчиков, настроенных на обратный ход. Поскольку timing не имеет решающего значения при старте и низких оборотах, можно установить датчики в нулевую точку, а угол опережения корректировать программно, когда двигатель начнет вращаться.

Заключение

BLDC-двигатели имеют множество преимуществ по сравнению с традиционными коллекторными двигателями. Благодаря наличию мощных магнитов, мощность BLDC-двигателей оказывается сопоставимой с мощностью коллекторных двигателей, однако их габариты существенно меньше. Грамотное проектирование системы управления является залогом высокой эффективности электропривода. Четкое определение требований в каждом конкретном приложении также является фактором обеспечения высокой эффективности. Современные микроконтроллеры и интегральные драйверы позволяют достигать требуемого уровня эффективности и обеспечивать необходимый функционал систем управления. Управление двигателями играет важную роль в различных промышленных приложениях, например, в роботизированных системах, в станках с ЧПУ и в других прецизионных системах с двигателями.

Анализ схем управления двигателями постоянного тока. И.С. Сыркин

Государственное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет»

E-mail: ilya.syrkin@mail.ru

Приводы подач исполнительных механизмов, имеющих кинематическую схему «ходовой винт – гайка» содержат двигатели постоянного тока, асинхронные, шаговые двигатели. Для перемещения исполнительного органа станка требуется управлять ими по требуемому закону. В качестве примера можно рассмотреть управление двигателями постоянного тока.

Каждая система управления электродвигателем состоит из электронной части и управляющей программы. Эти элементы могут быть как простыми, так и сложными в зависимости от типа двигателя, требований к системе. Как правило высокопроизводительные системы требуют более сложного оборудования. В данной статье приводится обзор основных схем, применяемых для управления различными типами двигателей. За основу систем управления положены микроконтроллеры фирмы Microchip.

При управлении коллекторными двигателями постоянного тока требуется регулировать электрический ток, проходящий через обмотки двигателя. Этот процесс включает регулирование направления магнитного потока и величины тока. Простейшая схема управления приведена на рис. 1. Данные схемы позволяют управлять вращением двигателя только в одном направлении.

Рисунок 1 — Управление коллекторным двигателем постоянного тока: а) схема с верхним расположением ключа; б) схема с нижним расположением ключа; в) мостовая схема

Схема с верхним расположением ключа часто применяется в системах с повышенными требованиями к безопасности – короткое замыкание не приводит к включению двигателя, в выключенном состоянии оба вывода обмотки подключены к общему проводу схемы. Схема с нижним расположением ключа самая дешевая, т.к. для управления силовым MOSFET транзистором достаточно подавать на затвор сигнал с цифрового выхода микроконтроллера без использования специального драйвера. Для реверсивного управления двигателем требуется использовать мостовую схему включения, приведенную на рис. 1 в). Частота вращения двигателя регулируется с помощью изменения действующего значения напряжения на обмотке якоря. При использовании микроконтроллеров это напряжение можно регулировать с помощью широтно-импульсной модуляции (ШИМ).

Для измерения частоты вращения двигателя можно использовать эффект обратной ЭДС или использовать опто-электронный датчик положения ротора («ромашка»). (Рис. 2.)

Бесколлекторные двигатели показывают пример упрощения конструкции с одновременным усложнением схемы управления. Двигатель не может самостоятельно переключать обмотки (управлять током), поэтому схема управления должна самостоятельно корректно регулировать величину тока в обмотках для обеспечения равномерного вращения вала двигателя. Схема управления содержит полумостовую схему включения каждого из трех выводов обмоток. Существуют 2 основных типа управления бесколлекторным двигателем: с датчиками и без датчиков. Для того, чтобы включать обмотки в нужной последовательности, необходимо использовать различные методы определения положения ротора. Мотор с датчиком всегда сообщает контроллеру положение ротора. Каждому положению ротора соответствует определенный набор управляющих воздействий, подаваемых на мостовую схему включения обмоток. В моторах без датчика положение ротора определяется по величине ЭДС, возникающей в неподключенной обмотке. Моторы без датчиков проще в изготовлении, но сложней в управлении. Их применяют в задачах, не требующих частых запусков и остановок. Моторы с датчиками – лучший выбор для задач, связанных с периодическими остановками и запусками. Схемы включения двигателя приведены на рис. 3.

Рисунок 2 – Измерение скорости вращения двигателя а) с использованием обратной ЭДС; б) с использованием датчика положения

Рисунок 3 — Управление бесколлекторным двигателем постоянного тока: а) общая схема включения; б) схема включения без датчика положения; в) схема включения с датчиком положения.

Сложность построения схем управления не зависит от типа двигателя. Бесколлекторные двигатели обладают лучшими показателями надежности, удельной мощности и экономичности по сравнению с коллекторными, поэтому рекомендуется использовать бесколлекторные двигатели для приводов подачи станков.

голоса
Рейтинг статьи
Читать еще:  Что такое периодический запуск двигателя
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
Как подключить двигатель от HDD, CD, DVD (доступные микросхемы контроллеры двигателей и схема подключения бесколлекторных трёхфазных двигателей)