Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое фотонные ракетные двигатели

Что такое фотонные ракетные двигатели

Фотонная ракета работает за счет реакции аннигиляции вещество-антивещество. Продуктом ее является жесткое электромагнитное излучение (γ-кванты), поэтому скорость истечения рабочего тела равна с. Схематическое устройство фотонного корабля показано на рис. 1.15.1. При этом мы отвлекаемся от трудностей получения и хранения огромного количества антивещества: это проблемы конструкторов далекого будущего, с которыми, мы надеемся, они справятся (если сочтут необходимым создавать подобный корабль).

Рис. 1.15.1. Схема устройства фотонного корабля

Рассмотрим кинематические характеристики фотонного корабля. Пусть ракета в течение некоторого времени t движется с ускорением a , после чего двигатель выключается. Если в момент остановки двигателя отношение начальной массы к конечной равно μ, то путь, пройденный ракетой в ускоренном полете, будет равен

В конце этого пути ракета разовьет скорость V, определяемую выражением

При этом длительность полета на активном участке траектории (пока работает двигатель) по часам земного наблюдателя будет равна

Оговорка насчет часов земного наблюдателя неслучайна. Дело в том, что для космонавтов, движущихся с околосветовой скоростью, темп течения времени замедляется. Поэтому время ускоренного полета или длительность активного участка траектории в системе отсчета, связанной с движущимся кораблем, будет меньше, чем для земного наблюдателя. Оно выражается формулой

Релятивистское сокращение времени к моменту остановки двигателя составит

Для проведения численных расчетов удобно выражать время в годах, а расстояние в световых годах. Если при этом ускорение а выражено в м/с 2 , то приведенные формулы принимают вид

Параметры межзвездного полета с постоянным ускорением (замедлением) а = 10 см/с2

Дальность полета, св. годы

Полное время полета туда и обратно, годы

Полное массовое число μ 4

в системе неподвижного наблюдателя

в системе корабля

Пользуясь этими формулами, читатель сможет самостоятельно проверить результаты приводимых ниже расчетов.

Чем дольше работает двигатель фотонного корабля, тем выше скорость, развиваемая им в конце активного участка траектории. Поэтому при заданной дальности полета минимальное время достигается тогда, когда корабль ускоряется до половины пути, а затем начинает тормозиться с тем же ускорением (замедлением), так что в конце пути его скорость равна нулю. На обратном пути все повторяется в том же порядке. Параметры такого полета приведены в таблице 1.15.1.

Последняя строка в этой таблице соответствует границам наблюдаемой Вселенной. Как видно, фотонный корабль может за время жизни одного поколения космонавтов (τ t , затем двигатель выключается и дальнейшее движение корабля происходит по инерции со скоростью V, которая была достигнута в конце участка ускорения. Перед прибытием в пункт назначения включается тормозная установка, работающая с тем же ускорением (замедлением), которая гасит скорость корабля до нуля. Пусть ускорение на активном участке траектории а = 10 м/с 2 (ускорение свободного падения на Земле). И пусть массовое число μ в конце участка ускорения равно 10. Тогда скорость после выключения двигателей будет составлять V = 0,98 с; путь, пройденный кораблем в ускоренном полете, X = = 4 св. года; такой же путь будет пройден при замедлении. Следовательно, длина пути, который корабль пройдет в свободном полете, составит 1000 -2×4 = 992 св. года. Подсчитаем теперь время полета. По часам земного наблюдателя длительность ускоренного полета t = 5 лет, такова же длительность на участке торможения. Время свободного полета будет равно 992/0,98 = 1012 лет. Полное время полета туда составит 5 + 1012 + 5 = 1022 года, а время полета туда и обратно 2044 года. По часам космонавтов длительность ускоренного полета составит τ = 2,2 года. При скорости 0,98 с релятивистское сокращение времени Δτ/Δt = 0,2. Следовательно, длительность свободного полета по часам космонавтов составит 0,2 χ 1012 лет = 202 года. Полное время полета туда будет равно 2,2 + 202 + 2,2 = 206,4 года, а полет туда и обратно займет 413 лет. То есть в этом случае не удается завершить полет за время жизни одного поколения звездоплавателей. Заметим, что если массовое число на участке ускорения равно μ, то и на участке торможения оно тоже равно μ. Значит, полное массовое число при полете туда будет равно μ 2 , а при полете туда и обратно μ 4 ; в нашем примере μ 4 = 10 4 , таково отношение начальной массы корабля к конечной после выгорания всего топлива.

Читать еще:  Что такое дизельный двигатель crdi

Пусть теперь дальность полета R по-прежнему равна 1000 св. лет, и пусть корабль ускоряется до половины пути, а затем тормозится до прибытия в точку назначения. Ускорение а = 10 м/с 2 . Длина пути на участке ускорения X = R/2 = 500 св. лет. Следовательно, μ = 10 3 , 1-V/c = 2 · 10 — 6 (!). Длительность ускоренного полета по часам земного наблюдателя 500 лет, полная длительность полета туда 1000 лет, а туда и обратно 2000 лет. По часам космонавтов время ускоренного полета 2,2 χ 3 = 6,6 лет, время замедленного полета тоже 6,6 лет, полное время полета туда 13 лет, а туда и обратно 26 лет. Значит, полет можно завершить при жизни одного поколения космонавтов. При этом в конце путешествия отношение начальной массы к конечной будет составлять μ 4 = 10 12 (!)

Рис. 1.15.2. Кинематическая схема полета космического корабля. Масштаб по осям не выдержан

Итак, при дальности полета 1000 св. лет полное массовое число равно 10 12 . Если полезная масса корабля составляет 100 тонн (что совсем немного для такого дальнего путешествия), то начальная масса должна равняться 10 14 тонн, это намного превышает общее количество массы, которое перерабатывает современная человеческая цивилизация. При дальности полета, сравнимой с размерами Галактик (100 тыс. св. лет) начальная масса становится равной 10 22 тонн, что превышает массу Земли. Если расстояние порядка 10 7 св. лет, что равно расстоянию до соседних галактик, то начальная масса будет превышать массу Солнца. Наконец, если мы хотим лететь к границам Вселенной, то потребуется начальная масса корабля, превышающая массу Галактики! При этом не следует забывать, что надо еще произвести соответствующее количество антивещества!! Цена оказывается непомерно велика. Вероятно, дальние межзвездные путешествия на расстояние, превышающее 1000 св. лет, с помощью фотонного корабля все-таки невозможны.

Об этом свидетельствуют и энергетические характеристики полета с околосветовыми скоростями. Для фотонной ракеты удельная мощность двигателя, т. е. мощность, приходящаяся на единицу начальной массы, равна

При ускорении g (ускорение свободного падения на Земле) удельная мощность составляет 3 ∙ 10 6 Вт/г. Это фантастически большая величина! Такую удельную мощность имела бы крупная электростанция (типа Днепрогэса), если бы она весила 200-300 г. Постараемся представить, что это означает применительно к межзвездным путешествиям.

Пример 2. С. Хорнер приводит следующий поучительный пример. Пусть межзвездный корабль, полезная масса которого составляет Ют, движется с ускорением g, вплоть до достижения скорости 0,98 с. Масса аннигиляционных установок и излучателей тоже равна 10 т. Как мы видели, для достижения скорости 0,98 с необходимо массовое число μ= 10. Следовательно, начальная масса ракеты должна составлять 200 т. При этом полная мощность двигателей будет равна 6-10 14 Вт. Это приблизительно в 100 раз превышает современное энергопотребление по всему земному шару. Предположим, как это делает фон Хорнер, что каждая аннигиля-ционная установка имеет мощность 15 МВт (приблизительно такова мощность судового реактора), а каждый излучатель имеет мощность 100 кВт. Тогда потребуется 40 млн таких аннигиляционных установок и 6 млрд излучателей. И все эти 40 млн аннигиляционных установок и 6 млрд излучателей должны весить всего 10 тонн! Только при этих условиях ракета может двигаться с ускорением g и спустя 2,2 года достичь скорости 0,98 с. Если же мы хотим на такой ракете совершить путешествие туда и обратно, то полное массовое число μ 4 = 10 4 . Начальная масса ракеты будет составлять 2 · 10 5 т, полная мощность 6 · 10 17 Вт, что в несколько раз превышает энергию, получаемую Землей от Солнца. В этом случае уже потребуется 40 млрд аннигиляционных установок мощностью 15 МВт каждая и 600 млрд излучателей мощностью 1 МВт. И все это по-прежнему должно весить 10 т.
При полете к удаленным областям Галактики, на расстояние порядка 10 5 св. лет, как можно видеть из табл. 1.15.1, полное массовое число должно равняться 10 20 , при этом мощность двигателей весом 10 τ должна превысить энергетический выход десяти миллионов Солнц!

Можно было бы сказать, что это трудности количественного порядка. Но они столь велики, что, как справедливо подчеркивает Шкловский, явно перерастают в качественные.

Читать еще:  Что такое сгорели двигатели

Помимо энергетических проблем существуют и другие трудности, с которыми сопряжен полет фотонного корабля. Одна из них связана со столкновением корабля с частицами межзвездной пыли. Несмотря на микроскопические размеры пылинок, столкновение даже с одной из них при околосветовой скорости корабля может иметь катастрофические последствия. А ведь корабль при полете к ближайшим звездам должен испытать 10 10 столкновений на 1 кв. м поверхности лобового сечения. И здесь вряд ли поможет ионизация пылинок и отклонение их мощным магнитным полем, как предлагалось в некоторых проектах.

Наконец, существует еще одно важное обстоятельство, на которое обратил внимание Э. Парселл. Выше мы видели, какая гигантская мощность выделяется при полете фотонной ракеты. Но ведь это не «безобидный» поток энергии — это жесткое γ-излучение, губительное для жизни. И поток его направлен в сторону Солнечной системы. Так что возникает проблема защиты и не только экипажа, а Земли и даже всей Солнечной системы!

Все это указывает на то, что полеты с околосветовыми скоростями, которые требуются, чтобы космонавты могли за время своей жизни достигнуть любых самых удаленных уголков Вселенной и вернуться обратно, по-видимому, вряд ли возможны. «Вопреки мнению писателей фантастов, — пишет И. С. Шкловский, — межзвездные фотонные ракеты, движущиеся с релятивистской скоростью, вероятнее всего, никогда не будут построены». Означает ли это что межзвездные путешествия невозможны?

Содержание

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространенная в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10 −27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2-12 (в среднем 5-7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10 −17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно много большее время жизни, до

1,5×10 −4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20-40 м, в плотном веществе, например, графите — порядка 0,1-0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Читать еще:  Nissan vanette двигатель схема

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жесткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов,

1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а

1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало» [источник не указан 827 дней] .

При такой невысокой массовой отдаче, порядка 23% [1] , эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвездной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению количество антивещества в межзвездной среде очень мало — порядка одного атома антиводорода или антигелия на 5*10 6 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остается актуальной и для прямоточного аннигиляционного фотонного двигателя. [2]

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены: Это:

  1. Проблема получения большого количества антивещества
  2. Проблема его хранения
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Ракета размером с Луну

Становится ясно, что вышеописанные трудности делают создание фотонной ракеты делом бесперспективным. У нее, даже при решении всех этих проблем, будет весьма плохая тяга. Замечательная скорость выхлопа фотонной ракеты имеет свою цену. Расчеты показывают, что для развития одного ньютона тяги фотонной ракеты понадобится 300 МВт мощности. Эти расчеты основаны на законах фундаментальной физики. И технологический прогресс не сможет изменить это. Это очень неэффективно. Небольшой современный турбовентиляторный двигатель скромного реактивного самолета может иметь тягу 27 000 ньютонов. В то же время хорошая электростанция может вырабатывать до 650 МВт мощности. Представляете, сколько энергии нужно будет потратить, чтобы разогнать фотонную ракету? И она должна быть просто огромной. Возможно, иметь размеры Луны. Чтобы вместить все запасы топлива. Ее ускорение было бы весьма медленным. Возможно, потребовались бы десятилетия, чтобы достичь приличных скоростей.

Фотонные ракеты, конечно, были описаны и в научной фантастике. Самое первое упоминание о них появляется в романе братьев Стругацких «Страна Багровых Туч», опубликованном в 1959 году. Несколько лет спустя Станислав Лем использовал фотонную ракету, чтобы привести в движение человеческий звездолет. Он описал ее в своем удивительно дальновидном романе о конфликте с инопланетными нанотехнологиями «Непобедимый» (1964).

Какой можно сделать вывод из всего вышесказанного? Если объективно оценить возможности создания фотонных ракет, вся концепция разваливается. Для подобных машин потребуются материалы и методы, которые могут никогда не существовать в реальной Вселенной. Для их работы потребуются огромные ресурсы и огромное количество времени, чтобы использовать их удивительную производительность. К сожалению, фотонные ракеты — это всего лишь захватывающая фантазия.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector