Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое сервоприводные двигатели

Сервопривод — схема, характеристики, назначение

Сервопривод – механизм, позволяющий устанавливать и фиксировать рабочий орган оборудования в заданных положениях, перемещать его в соответствии с заданной программой. Перемещение не единственная задача устройств, они могут поддерживать необходимый момент на валу при нулевой скорости вращения вала. Это используется для удержания исполнительного механизма в одном положении под нагрузкой.

Сервоприводы устанавливают на станках с ЧПУ, грузоподъемных механизмах, промышленных роботах. Сфера применения сервопривода не ограничивается производством. Механизмы применяют в бытовой технике, системах отопления и кондиционирования, автотранспорте.

Как работает коллекторный двигатель?

Коллекторный двигатель постоянного тока имеет обмотку на роторе и постоянный магнит на статоре. Обмотка ротора состоит из нескольких сегментов, которые подключены к пластинам коллектора. Щётки, перемещающиеся по коллектору, обеспечивают передачу электрического тока между статором и ротором, а также переключение сегментов обмотки при вращении ротора. При подаче постоянного напряжения к выводам двигателя электрический ток протекает через щётки и коллектор в сегменты обмотки, подключённые к пластинам коллектора на которых в настоящий момент стоят щётки. Ток, протекающий по обмотке ротора, взаимодействует с магнитным полем постоянных магнитов, создавая крутящий момент, который поворачивает ротор. При вращении ротора сегменты коллектора переключаются, позволяя току протекать через другие участки обмотки. Ток, протекающий через постоянно поворачивающиеся секции обмотки ротора, постоянно создаёт крутящий момент. При приложении к обмотке постоянного напряжения коллекторный двигатель вращается с постоянной скоростью.

Сравнение: планарные линейные двигатели и штоковые линейные двигатели

Компания Sodick начала разработку линейных двигателей (ЛД) для электроискровых (ЭИ) станков в начале 90-х. Разработчики перепроверили и испытали ряд схем ЛД. Все схемы линейных двигателей были отбракованы из-за их недостатков, и только планарная схема ЛД оказалась идеальной. Планарные линейные двигатели Sodick полностью изготавливаются на заводах компании.
Штоков-цилиндрические двигатели разрабатывались для замены пневмо-, гидро- и ШВП-приводов в роботах-манипуляторах, штабелеукладчиках, сборочных платформах, а также мед- и спецоборудовании. Электроискровые станки — первое известное применение штоковых ЛД в станках вообще. Штоково-цилиндрические двигатели производятся рядом специализированных компаний. Станочники стали покупать и встраивать штоковые двигатели в свои станки лишь после 2010 года.

ПЛАНАРНЫЕ ЛИНЕЙНЫЕ ДВИГАТЕЛИ vs

ШТОКОВО-ЦИЛИНДРИЧЕСКИЕ ДВИГАТЕЛИ

Shaft Motor — штоковые двигатели. Покупные штоково-цилиндрические двигатели в электроискровых станках некоторых станочных фирм

Linear Motor — линейные двигатели. Разработка электроискровых станков с линейными двигателями (ЛД) стартовала в компании Sodick в начале 1990-х

Первый показ ЭИ станка со штоково-цилиндрическими двигателями — JIMTOF-2010

Штоково-цилиндрические двигатели (ШЦД) производятся рядом компаний . Например, японской фирмой JMC Hillstone совместно с Nippon Pulse Company. Начало производства — 2005 г. Другие изготовители штоковых ЛД: LinMot, PBA Systems, Orientalmotor, Parker, Ametek…

Помимо названия shaft motor (штоковые двигатели) такие устройства известны как tubular (трубчатые), а также цилиндрические двигатели. Отметим, что сотрудники японской станкостроительной компании, которая первой начала применять такие двигатели в своих электроискровых (электроэрозионных) станках в 2010 году, не называют их LINEAR — только SHAFT MOTOR.

Штоково-цилиндрические двигатели разрабатывались для замены пневмо-, гидро- и ШВП-приводов в роботах-манипуляторах, штабелеукладчиках, сборочных платформах, а также мед- и спецоборудовании. ЭИ станки — первое известное применение штоковых двигателей в станках вообще.

Штоково-цилиндрические двигатели имеют бессердечниковые катушки и, как результат, — недостаточную тягу. Такими двигателями можно оснащать лишь малые и средние модели ЭИ вырезных станков — для больших электрискровых вырезных станков такие двигатели мало пригодны из-за дефицита тяги. По этой же причине их не ставят в электроискровые прошивные станки — штоковый двигатель попросту не поднимет тяжелый электрод!

Серийное производство ЭИ станков с планарными линейными двигателями — с 1998 года.

До 2000 г. производились лишь электроискровые (электроэрозионные) прошивные станки с линейными двигателями (ЛД) только по оси Z.

С 2000 г. появились электроискровые (ЭИ) проволочно-вырезные станки с ЛД по осям XY и прошивные с ЛД по осям XYZ.

С 2001 г. линейные двигатели устанавливаются в электроискровые станки Sodick в сервоприводы по всем осям:

  • ЭИ координатно-прошивные — по XY и Z
  • ЭИ проволочно-вырезные — XY и UV

Планарные линейные двигатели станков Sodick — собственной разработки и собственного производства , включая редкоземельные Ne-Fe-B магниты. Линейный двигатель Sodick — это по сути всего 2 части: плоская панель постоянных магнитов и плоскый блок электромагинтных (ЭМ) катушек (большей частью сердечниковых), которые разделяет константный зазор 0,4 мм и установлены параллельно плоскости перемещений. Такие двигатели можно условно назвать “плоско-параллельными” или «плоскими», однако более распространен термин планарные ЛД.

Станки Sodick и их планарные линейные двигатели суть единые мехатронные системы : ЛД создаются для станков “индивидуально”, а станки, в свою очередь, создаются под эти ЛД и соответствующие нагрузки.

Читать еще:  Что является двигателем власти

Штоково-цилиндрический двигатель нельзя поставить в прошивной электроэрозионный станок — слабый двигатель попросту не поднимет тяжелый электрод!

Главное достоинство штоково-цилиндрических двигателей:

  • ШЦД легко встроить на место ШВП-привода в существующие устройства (станки).

Но это, по сути, единственное достоинство!

Главные недостатки:

  • дефицит тяги (ЭМ катушки — бессердечниковые!)
  • проблемы с теплоотводом
  • тяга генерируется на расстоянии от плоскости перемещений — при любом перемещении двигатель тянет одну сторону стола вниз, другую вверх
  • разнонаправленные биения магнитного штока и динамическая ассимметрия зазора ( вектор тягипляшет хаотично от направления подачи!)
  • хлипкаяконструкция (шток крепится лишь концами и внатяг!).
  • пляшущий зазор .

Главные достоинства планарных ЛД Sodick:

  • надежность и долговечность — свыше 20 лет успешной эксплуатации тому подтверждение;
  • тяга генерируется в плоскости, близкой к направляющим линейкам приводимых кареток ;
  • высочайшая динамическая точность, которая остается неизменной все долгие годы эксплутации ( вектор тяги максимально совпадает с направлением подачи! );
  • большая мощность и тяга благодаря сердечниковым ЭМ катушкам;
  • электромагнитные катушки «сидят» непосредственно на массивных чугунных частях — идеальный теплоотвод !
  • особо жесткая конструкция;
  • неизменно константный (постоянный) зазор.

Недостаток:

  • Планарные ЛД нельзя встроить в обычный станок, разработанный “под ШВП”. Для таких ЛД необходима особая жесткая конструкция станка, рассчитанная на нагрузки, возникающие при работе сверхбыстрых планарных ЛД.

Линейные станки Sodick разрабатывались и разрабатываются под свои линейные двигатели — линейные двигатели Sodick разрабатываются под свои линейные станки.
Линейные станки Sodick с планарными линейными сервоприводами — единые мехатронные системы.

Пляски зазора в штоково-цилиндрических двигателях в процессе их работы:

Тонкий шток неизбежно прогибается как под воздействием меняющихся магнитных полей, так и под собственной тяжестью. В результате шток при любом перемещении катушек вдоль него разнонаправленно “гуляет”, меняя, как следствие, зазор. Ширина зазора в штоковых двигателях — величина неопределенная, фактические “танцующая”.

Жесткие мощные планарные линейные двигатели Sodick — проверены двумя десятилетиями эксплуатации

Как панели постоянных магнитов, так и блоки ЭМ катушек планарных линейных двигателей Sodick жестко крепятся на массивные конструкции станков, что полностью исключает какие-либо деформации частей линейных двигателей и станков.
Попробуйте-ка согнуть чугунную станину или колонну! Или массивный стол!
Зазор между магнитами и катушками всегда постоянен — 0,4 мм.
Одна из причин неизменно высокой точности в течение всей долгой жизни станка.

Подобные двигатели известны давно. Достаточно вспомнить школьный соленоид с уроков физики. Штоково-цилиндрический двигатель и есть, по сути, соленоид с удлиненным сборным сердечником из отдельных кольцевых постоянных магнитов и управляемыми кольцевыми электромагнитными катушками.

Штоковый двигатель встраивается в станок на место ШВП.
Как была ШВП смещена от центра в старом станке, так и в новом смещен от центра уже штоковый двигатель.

Тонкий магнитный шток толщиной чуть больше указательного пальца легко деформируется, возникают разнонаправленные боковые биения, фатально влияющие на точность станка. Причин “гуляния штока” по меньшей мере две:

  • продольные волны, вызываемые силами сжатия и растяжения, которые порождаются неоднородностью плотности магнитных полей ЛД;
  • отклонения параметров отдельных магнитов на штоке, а также разнородность магнитных параметров разных частей.

В работающем штоковом ЛД тонкий шток изгибается в разные стороны, как бы “пляшет”, а зазор между ЭМ катушками и кольцевыми магнитами непрерывно и разнонаправленно меняется. Такие “твисты” магнитного штока рождают переменные разнонаправленные боковые нагрузки на направляющие. Известно, что направляющие рассчитаны на вертикальные нагрузки, но быстро изнашиваются и теряют точность, если нагрузки боковые. Чтобы тонкий магнитный шток меньше гулял, изготовители штоковых двигателей предписывают крепить магнитный шток клиньями внатяг (!) в опоры на станине еще на заводе-изготовителе станков. Насколько хватает такого натяга? Как часто придется “перенатягивать” шток уже в рабочем станке самим пользователям станка M? И «почём» это будет обходиться?

Опасность хаотичных плясок и твистов штока возрастает многократно, когда частота таких колебаний совпадает с собственной резонансной частотой конструкции… В любом станке имеется множество резонансных областей, которые зависят от физических характеристик и от изменений температуры. Ситуаций предостаточно!

Компания Sodick начала разработку ЛД для ЭИ станков в начале 90-х в обстановке строжайшей секретности. У компании был печальный опыт: первоначальную схему безызносной ЭИ обработки у создателя компании Фурукава украли.

Разработчики перепроверили и испытали на стендах множество схем ЛД. Рассматривались конструкции с магнитными панелями и блоком ЭМ катушек перпендикулярно плоскости перемещений, подобные конструкциям, которые пытались производить годами позже компании F (выпуск таких станков «успешно» прекращен!) и С. Проверялись среди прочих и конструкции с кольцевыми магнитами, подобные новомодным штоково-цилиндрическим ЛД. Все проверенные схемы ЛД были забракованы из-за их пороков и недостатков, и только планарная (плоско-параллельная) схема ЛД оказалась идеальной для станков, но с одной оговоркой: под приводы с такой схемой ЛД необходимо заново создавать весь станок. По сути, станок с планарными ЛД — единая мехатронная система .

Читать еще:  Что такое свап комплект двигателя

Машина, создаваемая заново, — это большие затраты, но… дешево хорошо не бывает! Это подтверждает опыт других станкостроительных компаний: практически все станки с ЛД (не электроискровые) ведущих мировых изготовителей используют планарные (плоско-параллельные) ЛД — другой проверенной временем альтернативы пока нет!

Сила взаимного притяжения между панелью постоянных магнитов и блоком электромагнитных катушек примерно в 6 раз больше той тяги, которая создается при работе ЛД в направлении подачи. Однако, если станок изначально конструируется для установки такого ЛД, проблема решается сама собой: жесткость литых конструкций значительно выше тех сил, которые возникают при работе ЛД, а нагрузка приходится на направляющие, которые на эти нагрузки как раз и рассчитаны. В станках Sodick применены направляющие SSR фирмы THK (технология caged ball), сконструированные для использования прежде всего в прецизионных измерительных машинах. Эти направляющие выдерживают перемещения в 6 раз больше, чем расстояние от Земли до Луны и обратно!

Нагрузки на направляющие только вертикальные или в направлении, перпендикулярном плоскости ЛД. Боковые нагрузки при работе планарных ЛД отсутствуют! И это гарантирует сохранение первоначальной точности позиционирования по крайней мере на 15 лет! На практике точность сохраняют даже станки, выпущенные в 1998 году!

Szdoit металлическая треугольная нижняя пластина высокой твердости стальная панель автомобиль робот мобильная платформа запчасти

Original power hd rc digital servo dsm-44 toys servo for rc airplane fc model

Сервопривод с 6-канальной вращающейся ручкой, контроллер с 6 каналами/way, защитный прибор для проверки перегрузки по току, сервопривод для arduino, деталь для рук робота-робота

Spt spt5435lv-180w 35 кг водонепроницаемый большой крутящий момент цифровой сервопривод робот rc альпинистский автомобиль водонепроницаемый сервопривод для rc автомобиля/робота

Комплект управления беспроводной ручкой ps2 gamepad + приемник, контроллер управления для радиоуправляемых роботов, diy для arduino

Комплект управления wi-fi/bluetooth/ручкой, 2/4 каналов, двигатель постоянного тока и 16-канальная сервопривод, плата для радиоуправляемых роботов, детали для arduino

Hiwonder 6 ch серводвигатель плата с защитой от перегрузки по току для rc частей дистанционного управления робот игрушка для детей

Tbs дым безопасный ограничитель открывания двери устройство-предохранитель дрон 4-канальный подключенный предохранитель для радиоуправляемых электронных игрушек rc аксессуары для самолетов

12,5 г/2,5 кг/0,14 сек, цифровой, с высоким крутящим моментом, микро-металлический сервопривод ds939mg, робот, модельная часть, rc вертолет, rc, беспилотник с фиксированным рукавом

Робот arduino, металлическая шестерня, двойной цифровой серводвигатель с кронштейном

Esp-f беспроводной wifi модуль esp8266 серийный порт at/прозрачная передача/mqtt прошивка ce / fcc / rosh сертификация diy

Hakrc spektrum sr3100 3ch приемник для rc автомобилей грузовики и лодки дистанционного управления dx4c dx5c dx5r dx6r

Szdoit металлический робот рука захват механический зажим с высоким крутящим моментом сервопривода rc роботизированная часть образовательный diy для arduino

Бесплатная доставка ps2 беспроводной контроллер трансивер плата управления rc 51 один чип микрокомпьютер arduino робот умный автомобиль

2 шт./лот, двигатель постоянного тока 33gb-520, 12 в, 350 об/мин, металлическая шестерня, 100 ма, умный rc робот, детали шасси, diy, высокий крутящий момент

Esp8285 макетная плата nodemcu-m плата расширения esp-m2 беспроводной wifi модуль совместим с nodemcu diy для anduino

Водонепроницаемый сервопривод rc ds3218, обновленная и профессиональная высокоскоростная металлическая шестерня, цифровой сервопривод baja, сервопривод 20 кг/.09 с для автомобилей 1/8, 1/10, rc

32-канальный контроллер серводвигателя для робота ps2, беспроводной контроллер с usb кабелем, uart, игрушка «сделай сам», 32 канала

Высокий крутящий момент 12 в dc редуктор ed мотор 33 гб-520 металлическая шестерня 12 в 350 об/мин 5 мм диаметр вала для rc робот танк части шасси автомобиля

32-канальная плата сервоуправления, плата управления роботом, сервоконтроллер для arduino, акция + бесплатная доставка, 1 шт.

Оригинальный цифровой сервопривод emax es3352 12,4g для радиоуправляемого вертолета, бесплатная доставка

Lx3125mg синий водонепроницаемый 25 кг большой крутящий момент металла шестерни цифровой стандартный серводвигатель для rc автомобилей rc запчасти

2 шт./упак. новый nodemcu v4 lua плата разработки wi-fi от esp-12f esp 12f от esp8266 последовательный беспроводной модуль wi-fi diy lua iot

Робот выделенный беспроводной пульт дистанционного управления/поддержка 32 канальный серводвигатель/ручка ps2/пульт дистанционного управления/3 провода с 3 pin rc игрушка

16-канальный релейный щит модуль постоянного тока 5 в 12 в 24 в с оптроном lm2576 микроконтроллеры интерфейс реле питания для arduino diy kit

Новая версия, умный робот-двигатель на руль, шасси автомобиля, 4 колеса, 2 двигателя для arduino, набор игрушек «сделай сам» на радиоуправлении с сервоприводом и пультом дистанционного управления

Макетная плата esp8266, плата расширения двигателя nodemcu l293d, щит для радиоуправляемого робота, деталь шасси «сделай сам» для arduino

Читать еще:  Что такое двигатель с надувом

Lewansoul робот сервотестер ручка управления лер напряжение дисплей доска rc части ду обучающие робот игрушки для детей

Мощный hd lf-20mg большой крутящий момент металлическая шестерня рулевого механизма водонепроницаемый автомобиль робот цифровой rc сервопривод для радиоуправляемой машины радиоуправляемый робот rc игрушка

37 мм щеточный двигатель постоянного тока 12 в 100 об./мин высокий крутящий момент двигателя xd-37gb-520 металл редуктор низкая скорость двигателя для rc робот части diy

32-канальная плата сервоуправления, плата сервоуправления ssc -32, панель управления c, для управления роботом, механический захват, бесплатная доставка

2-канальный двигатель и 16-канальный серводвигатель расширительная плата servos двигатели модуль управления приводная плата для arduino

Мотор-редуктор szdoit в с кодировщиком, 150 об/мин, 25 мм, с латунной муфтой

Высокоточный модуль датчика температуры и сборщик влаги 5 в, работает с apple homekit, поддерживает поджигание прошивки diy

6 ch серводвигатель плата с защитой от перегрузки по току rc части дистанционного управления робот

Smarian mini usb 16 дорожный серводвигатель usc-16 серводвигатель рука робота-манипулятора гуманоид diy rc игрушечный автомобиль

35 кг высокий крутящий момент высокая скорость 180 градусов/270 градусов металлический цифровой сервопривод ds3235 робот/rc автомобиль водонепроницаемый сервопривод rc части автомобиля

Всенаправленное колесо szdoit мм + 4/ 5/ 6 мм, муфта из алюминиевого сплава, мобильное колесо робота/автомобиля, детали

Сравнительный анализ

Факторы выбора между сервоприводом и шаговым двигателем, их преимущества и недостатки наглядно представлены в таблице.

Сильно падает с повышением скорости. Максимален при остановленном вале

Высокий на всех скоростях. Максимален на высоких оборотах

Инертны, номинальная скорость не превышает 1000 об/мин. При слишком быстром разгоне пропускают шаги, вал может остановиться

Высокое, способны на короткое время увеличить ток обмоток в 3-4 раза от номинального значения. Скорость номинального вращения – до 10000 об/мин и выше

Низкая, не превышает 1 кВт

Высокая, может достигать 15 кВт

Низкая. Очень малый КПД – потребляет много тока, основная часть энергии расходуется в виде тепла

Высокая. Потребляемый ток пропорционален нагрузке

Обратная связь по положению

Отсутствует. Не выполненный шаг будет не замечен в системе ЧПУ. Однако, при грамотном проектировании станка обратная связь не нужна

Есть. Положение вала корректируется во время работы, при сбое обратной связи (например, заклинило вал) система укажет на ошибку

Низкая. Возможна только при применении дополнительных методов управления

Не более 5% от величины шага

Высокая. Если вал заклинило, двигатель просто пропустит шаги

Низкая. При заклинивании вала устройство может провернуть передачу, что приведет к поломке. Может сгореть в случае некорректной настройки поведения драйвера при перегрузке

Просты в настройке, работают по принципу включения и выключения

Множество настраиваемых параметров, что требует предельной внимательности и опыта в использовании

Сильный, что приводит к пропуску шагов, ухудшению качества обработки и др., особенно в крупных станках

Отсутствует, что делает их моторами выбора в крупном оборудовании (рабочее поле более 1,2 м 2 , масса свыше 50 кг)

Сильный, что может потребовать дополнительного охлаждения радиатором и вентилятором

Значительно дешевле сервоприводов, но только до размера фланца 110 мм

Дороже шаговых моторов, но при размере фланца 110 мм и выше цены схожи

Плюсы и минусы сервомоторов

Благодаря унифицированным размерам, эти устройства легко и просто устанавливаются в любые конструкции. Они безотказны и надежны, каждый из них работает практически бесшумно, что имеет большое значение при их эксплуатации на сложных и ответственных участках. Даже на невысоких скоростях можно добиться точности и плавных перемещений. Каждый сервопривод может быть настроен персоналом, в зависимости решения тех или иных задач.

В качестве недостатков отмечаются определенные сложности при настройках и сравнительно высокая стоимость.

Сервопривод для теплого пола

Управление шаговым двигателем

ЩСУ – щит станций управления

Ремонт люстры с пультом управления

Шаговый двигатель. Принцип работы

Принцип работы частотного преобразователя для асинхронного двигателя

Недостатки серводвигателей

Механическая сложность

Сервоприводы объединяют в себе коллекторный двигатель постоянного тока, потенциометр, сложный набор шестеренок и плату контроллера. Эта сложность означает, что по сравнению с другими типами двигателей у сервоприводов существует большее количество потенциальных точек отказа

Высокая стоимость

Из-за своей сложности сервоприводы (особенно высокопроизводительные модели) могут стоить дорого.

Сложная обвязка

По сравнению с другими типами двигателей, которые могут быть установлены в отверстия или в стандартные шаблоны монтажных отверстий, сервоприводы сложнее внедрить в конструкцию.

Вал двигателя смещен относительно центра корпуса, как и монтажные фланцы. На задней стороне корпуса нет точки опоры. Верхняя часть двигателя не совсем плоская. Все эти факторы в совокупности делают включение сервоприводов в проекты немного сложнее.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector