Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое тормозной момент двигателя

Современные электромеханические тормоза

Современные электромеханические тормоза

С появлением первых электродвигателей возникла потребность ими управлять. Сначала для этого использовали громоздкие механические тормозные конструкции, которые в последствии усовершенствовала электрика. Старый добрый соленоид до сих пор надежно тормозит в любых погодных условиях. Учитывая современный уровень развития техники, просто электрического способа торможения становится недостаточно. Возникла потребность в плавном торможении, позиционировании вала двигателя с необходимой точностью, которая все время растет, его надежной фиксации с целью удержания груза и санкционирования разгона. С этими задачами идеально справляется двигатель, оснащенный электромеханическим тормозом при наличии электронного управления.

Существует несколько типов электромеханических тормозов:

  • постоянного тока, переменного тока;
  • с зависимым и независимым питанием;
  • исходно заторможенные (стояночные), исходно расторможенные;
  • встраиваемые, пристраиваемые;
  • с наклеенной тормозной колодкой и тормозной колодкой на упругом элементе;
  • с ручным растормаживанием и без него.

Итак, как было сказано выше, тормоза бывают постоянного и переменного тока. Какой тип из них выбрать зависит от типа двигателя, доступного источника питания и схемы управления тормозом.

Зависимое и независимое питание тормоза определяет тип его подключения к источнику энергии. При зависимом питании тормоз подключается к обмотке двигателя, а при независимом — к внешнему источнику питания.

Параметр “исходно заторможен/расторможен” определяет начальное состояние тормоза при обесточенной обмотке. Исходно расторможенные тормоза применяются для остановки вращающегося вала двигателя и подтормаживания с целью более точного контроля за скоростью вращения, в то время как исходно заторможенные тормоза предназначены для удержания груза (например, в приводе крана) и аварийной остановки двигателя, что позволяет значительно повысить надежность и безопасность.

Тип крепления тормозной колодки (наклеенная тормозная колодка или тормозная колодка на упругом элементе) определяется режимом работы тормоза — тормозит или растормаживает.

Все современные тормоза характеризуются следующими параметрами:

  • статический тормозной момент (Нм);
  • динамический тормозной момент (Нм);
  • время остановки (мс);
  • время отпускания (мс);
  • время быстрого отпускания (мс);
  • потребляемая (рассеиваемая) мощность (Вт);
  • максимальная скорость ротора (об/мин);
  • вес тормоза (кг);
  • живучесть тормоза (время надежной эксплуатации);
  • экологичность (наличие асбеста).

Современные электромеханические тормоза обеспечивают тормозной момент и время остановки в широком диапазоне необходимых значений. Все определяется приемлемыми габаритами и энергопотреблением тормоза. И вот здесь уже большую роль играет применение инновационных материалов и технических решений в конструкции тормоза (к примеру, применение износостойких материалов с большим коэффициентом трения в качестве тормозных дисков).

Охлаждение тормозов играет крайне важную роль. Во время работы тормоза (особенно мощные и имеющие циклическое, частое повторение процесса торможения) сильно нагреваются, а при нагреве ухудшаются их тормозные свойства и увеличивается износ.

Время срабатывания тормоза (время остановки, время отпускания) также играет важную роль. Это особенно актуально в быстродействующих системах, где необходимо оперативное управление регулируемым
органом.

Все тормоза рассчитаны на определенную скорость вращения ротора, при которой он будет работать, обеспечивая заявленные характеристики. При превышении допустимой скорости увеличится износ тормоза и может возникнуть опасность его разрушения.

Практически во всех современных тормозах существует возможность регулировки (точной подстройки) тормозного момента по нагрузке.

Зачастую требуется не просто остановить двигатель, а плавно понижая скорость подвести к определенной точке и в ней уже произвести окончательную остановку, либо скорректировать скорость вращения путем подтормаживания. Имеются тормоза обеспечивающие и эти функции.

Плавное торможение/отпускание осуществляется на основании аналогового выходного сигнала преобразователя частоты, пропорционального частоте вращения двигателя, управляющего электромагнитным тормозом и подачей постоянной составляющей тока в обмотку двигателя или напряжением уставки компаратора, определяющего ток в обмотке тормоза путем импульсной накачки.

В заключение стоит отметить, что наиболее гибкого управления двигателем можно добиться, используя электромеханический тормоз в составе «Частотный электропривод» комплектного частотного привода.

Электромеханический тормоз

С этим тормозом двигатель подойдет к любым самым строгим требованиям: от задач позиционирования до конвейеров и подъемных механизмов.

Устройство автомобилей

Тормозной момент

Для интенсивного поглощения кинетической энергии движущегося автомобиля используют тормозные механизмы, которые создают на колесах искусственное сопротивление движению. При этом на ступицы колес автомобиля действуют тормозные моменты Мтор , а между колесом и дорогой возникают касательные реакции дороги (тормозные силы Ртор ), направленные навстречу движения.

Величина тормозного момента Мтор , создаваемого тормозным механизмом, зависит от его конструкции, а также усилия (в механическом) или давления (гидравлическом или пневматическом) в тормозном приводе. Усилие и давление в приводе пропорциональны возникающему тормозному моменту и тормозным силам.

Тормозной момент может быть определен по формуле:

где υт – коэффициент пропорциональности, изменяющийся в широких пределах и зависящий от многих факторов – температуры, наличия воды и т. д.);
Р – давление в тормозном приводе.

Тормозная сила

Сумма тормозных сил на заторможенных колесах обеспечивает сопротивление торможения. В отличие от естественных сопротивлений (сила сопротивления качению или скатывающая сила) сила торможения может регулироваться от нуля до максимального значения, соответствующего экстренному торможению.

Если тормозящее колесо не проскальзывает по поверхности дороги, то кинетическая энергия автомобиля переходит в работу трения тормозного механизма и частично в работу сил естественных сопротивлений. При интенсивном торможении колесо может быть заблокировано тормозным механизмом, тогда оно скользит по дороге юзом и работа трением имеет место между шиной и опорной поверхностью.

По мере увеличения интенсивности торможения растут затраты энергии на проскальзывание шин, вследствие чего увеличивается их износ. Особенно велик износ шин при блокировке колес на дорогах с твердым покрытием и при высоких скоростях скольжения.
Торможение с блокировкой колес нежелательно и по условиям безопасности движения, поскольку на заблокированном колесе тормозная сила значительно меньше, чем при торможении на грани блокировки. Кроме того, при скольжении по дороге автомобиль теряет управляемость и устойчивость.

Предельное значение тормозной силы определяется коэффициентом сцепления φx колес с дорогой:

Для всех колес двухосного автомобиля:

где Ртор1 и Ртор2 – тормозные силы на колесах передней и задней оси автомобиля соответственно; G – вес автомобиля.

Уравнение движения автомобиля при торможении

Для вывода уравнения движения автомобиля при торможении спроецируем все силы, действующие на автомобиль при торможении (рис. 1) на плоскость дороги:

где Рf – сила сопротивления качению;
Ртд – сила трения в двигателе, приведенная к колесам; зависит от рабочего объема двигателя, передаточного числа трансмиссии, радиуса колеса и КПД трансмиссии;
Рα – сила сопротивления подъему;
Рω – сила сопротивления воздуха;
Рj – сила инерции при поступательном движении;
Рг – сила гидравлического сопротивления в агрегатах трансмиссии, обусловленная вязкостью смазочного материала.

Для упрощения расчетов принимаем некоторые допущения, которые несуществленно повлияют на результаты.
При выключенном сцеплении или нейтральной передаче в коробке передач Ртд = .
Учитывая, что скорость автомобиля во время торможения падает, можно принять силу сопротивления воздуха Рω = 0.
Так как сила гидравлического сопротивления трансмиссии Рг мала по сравнению силой Ртор , ею тоже можно пренебречь, особенно при экстренном торможении.
Принятые допущения позволяют переписать уравнение (1) в упрощенном виде:

Учитывая формулы (1) и (2), получим:

где m – масса автомобиля; jз – замедление автомобиля.

Разделив обе части уравнения на силу тяжести автомобиля, получим:

где g – ускорение свободного падения.

Показатели тормозной динамичности

Показателями тормозной динамичности автомобиля являются: замедление jз , время торможения tтор и тормозной путь Sтор .

Замедление автомобиля

Роль различных сил при замедлении автомобиля в процессе торможения неодинакова. При небольших скоростях пренебрегают силой сопротивления воздуха, поскольку она незначительна.
С учетом этого уравнение замедления будет иметь вид:

Так как коэффициент продольного сцепления колеса с опорной поверхностью φx обычно значительно больше коэффициента сопротивления дороги ψ , то при торможении автомобиля на грани блокировки, когда усилие прижатия тормозных колодок таково, что дальнейшее увеличение этого усилия приведет к блокировке колес, величиной ψ в уравнении (3) можно пренебречь.
Тогда получим:

При торможении с отключенным двигателем коэффициент вращающихся масс можно принять равным единице ( δвр от 1,02 до 1,04), тогда получим:

Если при торможении автомобиля коэффициент сцепления φx колес с дорогой не меняется, то величина замедления остается постоянной, независимо от скорости движения.

Время торможения

Время tо торможения автомобиля до полной остановки складывается из отрезков времени:

где tр – время реакции водителя, в течение которого он принимает решение и переносит ногу на педаль тормоза, оно составляет 0,2…0,5 с;
tпр – время срабатывания привода тормозного механизма, т. е. в течение этого промежутка времени происходит перемещение деталей в приводе. Время срабатывания привода зависит от типа привода и его технического состояния: для гидропривода tпр = 0,005…0,07 с для дисковых тормозных механизмов и tпр = 0,15…1,2 с для барабанных тормозных механизмов; для систем с пневматическим приводом tпр = 0,2…0,4 с;
tн – время нарастания замедления. С момента соприкосновения деталей в тормозном механизме замедление увеличивается с нуля до того установившегося значения, которое обеспечивает сила, развиваемая в приводе тормозного механизма. Время нарастания замедления может меняться в пределах от 0,05 до 0,2 и зависит от типа автомобиля, состояния дороги, дорожной ситуации, квалификации и состояния водителя, состояния тормозной системы. Оно возрастает с увеличением веса автомобиля и уменьшением коэффициента сцепления колес с дорогой;
tуст – врем движения с установившимся замедлением или время торможения с максимальной интенсивностью соответствует тормозному пути. В этот период времени замедление автомобиля практически постоянно.

Считая, что нарастание замедления и снижение скорости осуществляются по линейному закону, а максимальная интенсивность торможения может быть получена только при полном использовании коэффициента сцепления φx , полное время торможения автомобиля можно определить по формуле:

где v – скорость движения автомобиля до начала торможения;
tсумм = tр + tпр + 0,5 tн – время до начала установившегося замедления.

Тормозной путь

Величина тормозного пути зависит от характера замедления автомобиля.
Обозначив пути, проходимые автомобилем за время tр , tпр , tн и tуст соответственно Sр , Sпр , Sн и Sуст , можно записать, что полный остановочный путь Sо автомобиля от момента обнаружения препятствия до полной остановки может быть представлен в виде суммы:

Первые три слагаемые представляют собой путь пройденный автомобилем за время tсумм . Он может быть представлен, как

С учетом допущений, позволяющих пренебречь силами сопротивления воздуха и дороги можно вывести формулу полного остановочного пути автомобиля:

где jуст – максимальное замедление автомобиля, равное установившемуся замедлению. Значение jуст можно определить опытным путем, используя прибор для измерения замедления движущегося транспортного средства – деселерометр.

Виды тормозных систем

Существует несколько классификаций. Самая распространённая – деление по функциональному назначению и применению. В зависимости от этого система может быть четырёх видов.

Рабочая. Задействована во всех режимах движения транспорта. Предназначена для снижения скорости транспортного средства до момента полной остановки и кратковременного удержания авто на месте.

Запасная. Нужна для остановки транспортного средства в чрезвычайной ситуации (при выходе из строя базовой – рабочей системы). Тормозящее действие – существенно меньше. Но в экстренной ситуации его достаточно, чтобы предотвратить аварию.

Стояночная. Служит для удержания транспортного средства на месте, предупреждает его самопроизвольное движение. Это, прежде всего, актуальное решение при уклоне дорожного полотна в холмистой местности. Кроме того, для коммерческого транспорта большой грузоподъёмности, автобусов это ещё и отличное подспорье для оптимизации нагрузки на цилиндры основной – рабочей системы. Управляется водителем посредством рычага ручного тормоза.
Вспомогательная. Устанавливается на коммерческом транспорте. Помогает при движении на затяжном спуске. Сохраняет стабильную скорость транспортного средства, снижает нагрузку на колёсный тормоз.

В ряде случаев функции могут совмещаться . Например, функцию запасной системы может взять на себя стояночная система

Кроме того, в зависимости от рабочего тела , за счёт которой система приводится в действие, выделяют следующие типы тормозных систем:

  • Гидравлическая. Это решение используют для легковых автомобилей, внедорожников, микроавтобусов, малогабаритных грузовиков и спецтехники.
  • Пневматическая. Монтируется на грузовых машинах, погрузчиках, грейдерах, автокранах, бульдозерах.
  • Механическая. Привод механическими тягами был использован на первых автомобилях. Но из-за низкого КПД и проблем с равномерным распределением усилия на все колёса, сейчас это решение не актуально .
  • Комбинированная (например, может совмещаться гидравлический и пневматический механизм работы).

Отдельно следует выделить систему рекуперативного торможения. Чаще устанавливается на грузовом транспорте (карьерных самосвалах) на городских автобусах и на современных легковых гибридных автомобилях.
Физические основы торможения.

Движение авто всегда связано с наличием кинетической энергии. Процесс торможения всегда связан с преобразованием кинетической энергии в тепловую. Тепловая энергия, выделяющаяся при трении диска и колодок рассеивается в окружающую среду. При рекуперативном торможении часть кинетической энергии преобразуется в электрическую энергию, которая запасается для её использования при разгоне автомобиля.

Принцип рекуперативного торможения долгое время использовался на железнодорожном транспорте, но вскоре он стал базовым и для работы тормозной системы авто.

Принцип действия гидравлической системы

Гидравлическая система реализует следующий принцип:

  • Водитель нажимает на педаль, мышечное усилие передаётся на поршень главного цилиндра где преобразуется в давление тормозной жидкости.
  • Жидкость вытесняется поршнем в гидравлические линии (трубки).
  • По трубопроводам жидкость под давление подаётся к исполнительным цилиндрам.
  • Срабатывают механизмы торможения.
  • Скорость вращения колёс уменьшается.

Рабочим телом в гидравлической системе является жидкость, на 93-98%, состоящая из полигликолей и их эфиров, и на 2-7% — из присадок, предназначенных для защиты деталей от коррозии.

Обладающая высокой плотностью, жидкость не сжимается, и гидропривод срабатывает очень быстро. Еще одно достоинство гидропривода – его самодостаточность. Конструкция не содержит компрессор или иное устройство, зависимое от работы мотора.

При перемещении жидкости по трубопроводу потеря энергии – несущественная, и КПД гидропривода достаточно высок (исключение – работа при температурах ниже минус 30 °С).

Работа тормозной системы с рекуперацией

Принцип же действия тормозной системы с рекуперацией иной:

При нажатии на педаль в генераторном режиме запускается электромотор (у электрического и гибридного транспорта) Создаётся тормозной момент на валу мотора.

Начинает вырабатываться электрическая энергия, направляемая в аккумуляторы или суперконденсаторы.

Если транспорт неэлектрический – запасается кинетическая энергия вращения маховика (впоследствии её используют для разгона).

Многие современные автомобили оснащены электронно-управляемой системой торможения, которая одновременно выполняет функции антиблокировочной, пробуксовочной системы; а также оснащена функцией динамической стабилизации транспортного средства.

Решения с рекуперацией способны обеспечить безисносную работу тормоза, кратчайший путь во время торможения с обеспечением высокой курсовой устойчивости, и предотвращение потери сцепления колёс с дорожным полотном.

Конструктивные решения с пневматикой

Отдельного внимания заслуживают решения с пневматикой.

  • Энергоносителем служит сжатый воздух.
  • В работе участвуют компрессор, осушитель, регулятор давления (может быть встроенным в осушитель или самостоятельным устройством) и ресиверы регенерации (компоненты хранения и подачи сжатого воздуха), краны, передаточные устройства.
  • Через воздушный фильтр в компрессор, работающий при включенном двигателе, втягивается воздух, и через регулятор и многоконтурный защитный клапан воздух под давлением закачивается в ресиверы. Осушитель оптимизирует состав воздуха, а регулятор — его давление.

У решения много достоинств. При нажатии на педаль сжатый воздух подаётся к исполнительным устройствам, а при освобождении педали он не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу. Система изнашивается менее интенсивно, чем у решений с гидравликой (воздух менее агрессивен, нежели жидкостный наполнитель, нет риска, что энергоноситель закипит или замёрзнет).

  1. Центральный электронный блок управления.
  2. Кран EBS.
  3. Пропорциональный ускорительный клапан.
  4. Магнитный клапан ABS.
  5. Модулятор задней оси.
  6. Разобщающий клапан резервного контура.
  7. Клапан управления тормозами прицепа.

Когда следует заменять датчики износа тормозных колодок?

Поскольку датчики износа тормозных колодок разработаны чтобы разрушаться, их следует заменять, как правило, каждый раз при установке новых тормозных колодок. Также рекомендуется регулярно проверять датчики в интервалах между заменами колодок и заменять их при необходимости. Со временем высокая температура, возникающая во время работы тормозов может повредить как проводку, так и зажимы. Их также можно повредить в ходе выполнения других работ с автомобилем, таких как установка новых тормозных дисков.

Чтобы удовлетворить растущий спрос на запасные части, Delphi Technologies предлагает широкий ассортимент датчиков износа тормозных колодок оригинального качества, поставляющихся либо вместе с колодками (как оригинальные изделия), либо в виде отдельных компонентов.

Как снижать скорость правильно?

Если в вашем автомобиле стоит механическая коробка, то достаточно просто убрать ногу с газа и машина сама будет постепенно останавливаться, получится торможение двигателем. Когда скорость сильно уменьшится, то надо сразу же снять с передачи, или включить пониженную, чтобы продолжать торможение двигателем.

Но особого смысла в этом нет. В общем, достаточно просто убрать ногу с газа, и смотреть, как машина постепенно замедляется, потом надо включить нейтральную передачу на коробке, и машина будет просто катиться, в этот момент достаточно плавно нажимать на педаль тормоза, а ближе к препятствию нажать ее так, чтобы машина полностью остановилась.

Двигателем хорошо тормозить, когда машина едет с горки. Преимущество торможения двигателем в том, что тормозные колодки и диски будут меньше изнашиваться, также расход топлива будет меньше. Но все это пустая трата времени, по большому счету.

Если надо затормозить перед светофором, то надо тормозить просто, как указано выше. Можно тормозить и так: не выключая передачу, начать торможение, чтобы скорость стремительно начала падать, затем выключаем передачу, после чего нажимать с умеренным усилием на педаль тормоза, держать ее в давлении и гасить скорость еще больше, а когда скорость станет очень маленькой – просто надо докатываться до светофора или впереди стоящего автомобиля.

Если скорость заранее не погашена, и возле светофора нажать сильно на педаль тормоза, то нос автомобиля слегка опустится вниз, если едешь сам, то ничего в этом плохого нет, наоборот, классно резко затормозить перед впереди стоящей машиной – это круто. А если в машине будут сидеть пассажиры, то им будет слегка не удобно, их начнет укачивать.

В зимнюю пору года резко перед светофором или впереди стоящим автомобилем останавливаться не стоит, потому что дорога может быть скользкой и при резком торможении, колеса будут скользить. Поэтому зимой 100% лучше тормозить заранее.

Кроме этого, полезно заранее тормозить еще и потому, что сзади вас может ехать очень быстрый гонщик, который может не среагировать на вашу резкую остановку.

Виды и приемы торможения автомобиля

Существует несколько видов и приемов торможения.

Плавное торможение автомобиля

Самым безопасным из них является плавное торможение, которое осуществляется путем нажатия на педаль тормоза. Плавное торможение применяют в случае спокойного движения машины, при средней скорости, и тогда, когда дорожное покрытие может себе позволить хорошее сцепление с колесами. В школах вождения данный вид торможения рассматривается как основной, так как он не несет каких – либо неприятных последствий или износа шин. Недостатком плавного торможения считается то, что его можно применять не везде: если качество дорожного покрытия оставляет желать лучшего, то эффективность плавного торможения падает.

Резкое торможение автомобиля

Следующим распространенным видом торможения является резкое торможение. Оно осуществляется резким нажатием педали тормоза почти до самого упора и удержанием педали в таком положении. Вследствие этого на дорожном покрытии образуются следы в виде черных полос, по которым можно определить путь водителя. У разных автомобилистов качество его торможения отличается, так как оно производится с помощью «мышечного чувства».

Резкое торможение используется в критических ситуациях. Водитель должен уметь сохранять бдительность, устойчивость и управляемость автомобиля при экстренном торможении, так как оно имеет свои особенности и должно быть исполнено грамотно. Минусами такого торможения является блокировка колес, износ шин, а также снижение коэффициента сцепления колес с дорогой.

Рекомендуется сводить к минимуму резкое торможение на дороге.

Прерывистое и ступенчатое торможение автомобиля

Следующие типы торможения относятся к торможению импульсивному: прерывистое и ступенчатое. Прерывистое – это, по существу, сочетание резкого торможения с растормаживанием. Водитель осуществляет периодическое нажатие на педаль тормоза, а затем полностью его отпускает. И эта процедура выполняется до полной остановки машины.

Прерывистое торможение используется на ухабистых неровных участках дорог. Не следует использовать интенсивное первоначальное тормозное торможение на большой скорости, так как нельзя допустить полной блокировки колес.

Ступенчатое торможение более применимо для экстренного торможения в сложных ситуациях, так как оно может создать минимальную длину тормозного пути. Ступенчатое торможение выполняется путем нажатия педали тормоза до упора, но до конца оно не опускается, а производится, своего рода, «прокачка» от полной блокировки колес до разблокировки.

При ступенчатом торможении меняется его интенсивность, но оно не прекращается. Рекомендуется применять этот вид торможения первоначально на короткой дистанции и далее увеличивать на свое усмотрение показатели интенсивности и продолжительности торможения. Устойчивость машины на дороге осуществляется за счет растормаживания.

Торможение двигателем автомобиля

Следующий вид торможения – торможение двигателем и торможение коробкой передач. В первом случае происходит отпускание педали газа при включенном сцеплении на действующей передаче. Педаль газа опускается, выжимается педаль сцепления, далее отключается повышенная передача. Затем опускается педаль сцепления и нажимается педаль акселератора в случае, если передача выключена. В конце выжимается сцепление, включается пониженная передача, и опускается педаль сцепления. Данный прием торможения основан на том, что двигатель становится потребителем энергии, не получая горючей смеси, но получая от трансмиссии крутящий момент. Преимущества этого торможения заключается в равномерном распределении тормозящего усилия между ведущими колесами машины, а также высокая устойчивость к заносам.

Торможение коробкой передач автомобиля

Торможение коробкой передач подразумевает равномерное постепенное переключение на низшие передачи для того, чтобы снижать скорость машины. При этом можно перескочить через несколько передач, только это будет иметь свои последствия — потерю маневрирования и управляемости машины. Этот способ торможения хорошо применять для плавного снижения скорости на тех участках дороги, где сложно проезжать без особой сноровки, например на мокрых спусках.

Хороший водитель должен уметь пользоваться каждым из вышеперечисленных способов, так как дороги везде разные, а разница способов торможения, как вы понимаете, подразумевают то, что для каждого «другого» участка дороги свой способ торможения.

Видео приемы и способы торможения автомобиля

Возможные последствия

Основные последствия перегрева — плохая работа тормозной системы. Колодка будет скользить по раскаленному диску без должного сцепления, автомобиль не остановится в нужный момент и может случиться авария, другая непредвиденная ситуация. После нескольких циклов ускорения-торможения, когда тормоза нагреты до 400-450 градусов, они могут полностью пропасть, вплоть до полного остывания. Перегрев дисков приведет к закипанию тормозной жидкости и, как следствие, полному выходу из строя системы.

голоса
Рейтинг статьи
Читать еще:  Что такое тип двигателя компрессор
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector