Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое ядерный реактивный двигатель

Ядерный ракетный двигатель

Ядерный ракетный двигатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).

В СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков М. В. Келдыша, И. В. Курчатова и С. П. Королёва. К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования ведутся и в 2018 году.

«Это ядерная батарейка, чтобы вам было понятно»

Что именно испытывалось под Северодвинском, до сих пор не известно.

Минобороны сообщало, что произошел взрыв и возгорание изделия при испытании «жидкостной реактивной двигательной установки». 10 августа «Росатом» заявил, что на морской платформе проходили испытания ракеты «с радиоизотопным источником питания».

«Это ядерная батарейка, чтобы вам было понятно», — объяснял изданию «Фонтанка» представитель госкорпорации.

11 августа научный руководитель РФЯЦ-ВНИИЭФ Вячеслав Соловьев сделал заявление, которое породило спекуляции относительно того, что под Северодвинском мог взорваться ядерный мини-реактор.

Жидкофазные и коллоидные ядерный ракетный двигатель

Работы по жидкофазным и коллоидным ЯРД не получили большого развития, так как эти ЯРД по своей эффективности сравнительно мало превосходят твердофазные, а по технической сложности сравнимы с газофазными (проблемы организации запуска, регулирования и выключения для жидкофазных и коллоидных ЯРД являются столь же сложными).

Другие разработки

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под кодовым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе.

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю.

Зачем NASA заказало ядерные двигатели у Джеффа Безоса, и при чём здесь Илон Маск?

NASA и Министерство энергетики США заключили с компаниями Blue Origin, General Electric Hitachi Nuclear Energy и Lockheed Martin новые контракты по созданию прототипов ядерных силовых установок для космических полётов на Марс.

Оборонные подрядчики Lockheed Martin Corp и Aerojet Rocketdyne Holdings Inc, а также производители дронов General Atomics и BWX Technologies Inc, имеющие опыт производства ядерных компонентов, станут субподрядчиками у Blue Origin, General Electric Hitachi Nuclear Energy и Lockheed Martin.

Считается, что ядерные силовые установки более эффективны, чем стандартные ракеты на химическом топливе, а это означает, что ядерные двигатели помогут сэкономить топливо при пилотируемых и грузовых миссиях на Марс и вглубь Солнечной системы.

На разработку ядерной технологии космических путешествий может потребоваться несколько лет, ведь ни одна страна в мире так и не довела создание ядерных ракетных двигателей до того уровня, когда можно говорить о более-менее безопасном применении. СССР прекратил разработку ЯРД 11Б91/РД0410 в 1988 году, через 2 года после Чернобыля. США закрыли аналогичный проект в 1965 году, сконцентрировавшись на лунной программе. Китай планирует построить свой ЯРД к 2040 году.

Читать еще:  Двери блокируются после запуска двигателя

Фото: NASA, прототип ЯРД 1964 года

Цвет и коллаж: Pro Космос

Технологии ракеты «Буря»: задел на будущее

С августа 1957 г. по декабрь 1960-го на полигоне Капустин Яр проводились летные испытания перспективной межконтинентальной крылатой ракеты (МКР) «350» / Ла-350 / «Буря». В соответствии с тактико-техническими требованиями, это изделие должно было показывать высочайшие летно-технические характеристики. Для выполнения такой задачи к разработке проекта пришлось привлечь массу организаций и институтов, которым предстояло найти и освоить перспективные решения, материалы и технологии.

Готовое изделие

Разработка «Бури» началась в 1954 г. в соответствии с Постановлением Совмина о создании двух ракетных комплексов межконтинентальной дальности. Разработку комплекса с крылатой ракетой поручили ОКБ-301 С.А. Лавочкина. Главным конструктором темы «350» стал Н.С. Черняков, научным руководителем – М.В. Келдыш. На всех этапах к проекту планировали привлекать массу других организаций и специалистов.

Около трех лет ушло на научно-исследовательскую часть проекта с поиском основных решений и на последующее проектирование. Техническую документацию по «Буре» подготовили в 1957 г., что позволило запустить производство опытной партии ракет для будущих испытаний.

Проект «Буря» предлагал строительство двухступенчатого ракетного комплекса наземного базирования. Первая ступень включала два боковых блока с жидкостными ракетными двигателями. Маршевую, оснащенную крыльями, оперением, средствами управления и боевой частью, выполнили с применением прямоточного воздушно-реактивного двигателя. Полет должен был осуществляться по командам системы управления, в состав которой включили средства инерциальной навигации и систему астрокоррекции АН-2Ш. Боевая часть – ядерный заряд массой 2350 кг.

Общая длина изделия «350» в стартовой конфигурации достигала 19 м. Диаметр маршевой ступени – 2,2 м, блоков первой ступени – 1,6 м. Размах треугольного крыла достиг 7,75 м. Масса ракеты превышала 97 т, из которых 34,68 т приходилось на маршевую ступень. Согласно требованиям, скорость маршевой ступени на траектории должна была достигать 3,2 М. Требуемая дальность полета – 7,5 тыс.км. В ходе испытаний получили дальность ок. 6,5 тыс.км.

Проблема нагрузок

Требования по скорости накладывали самые серьезные ограничения на прочности конструкции и на ее стойкость к различным нагрузкам, в т.ч. тепловым. Для изучения этих вопросов в 1954 г. в НИИ-1 разработали и построили сверхзвуковую аэродинамическую тепловую трубу с возможностью исследования нагрева и теплообмена. В 1957 г. в НИИ-1 начали эксплуатацию газодинамического теплового стенда Ц-12Т, в который можно было поместить полноразмерный макет ракеты со всем оборудованием. Это позволяло изучить влияние нагрузок на все изделие в сборе.

Расчеты и исследования показали, что в полете передняя кромка крыла и воздухозаборника, а также канал двигателя могут прогреваться до 420°C. Температура внешней обшивки была ниже, ок. 350°C, что было связано со сбросом части тепловой энергии в окружающую среду.

По результатам таких исследований осуществлялся поиск подходящих материалов и технологий. Для изготовления планера выбрали несколько сортов титана и жаропрочной нержавеющей стали. В ВИАМ и МВТУ им. Баумана разработали технологии обработки и сварки таких металлов и сплавов. Также создавались новые неметаллические материалы для использования в уплотнениях, в остеклении, в качестве покрытий и т.д. В частности, ленинградский ГОИ разработал технологию изготовления крупноразмерных кварцевых панелей. Они предназначались для формирования фонаря над датчиками астрокоррекции.

С учетом требований, расчетных нагрузок и доступных технологий была разработана передовая конструкция планера. Фюзеляж ракеты выполнили цилиндрическим с изменяемым сечением. В носовой части имелся сверхзвуковой диффузор с коническим центральным телом, внутри которого имелся отсек для боевой части. Воздуховод двигателя проходил по центру планера, а вокруг него размещались охлаждаемый отсек приборов управления и топливные баки.

Блоки первой ступени должны были обеспечивать разгон до 3М и тоже сталкивались с проблемой нагрева. В связи с этим они строились из тех же материалов, что и маршевая ступень, но отличались более простой конструкцией. Их выполнили в виде цилиндрических агрегатов с коническими головными обтекателями. Почти весь объем отдавался под баки топлива и окислителя; в хвосте находились ЖРД.

Читать еще:  Двигатель азлк нет давления масла

Вопрос двигателей

Для получения требуемых летных характеристик первая ступень нуждалась в двух двигателях тягой по 68 т. Разработка таких изделий была поручена ОКБ-2 НИИ-88 под руководством А.М. Исаева. Бюро уже имело предварительный проект двигателя тягой 17 т, и его было решено использовать в контексте «Бури». Новое изделие получило обозначение С2.1100.

Новый двигатель выполнили по четырехкамерной схеме; камеры и часть обвязки заимствовалась в имеющемся проекте. Он должен был использовать топливо ТГ-02 и окислитель АИ-27И. Подача компонентов в камеры сгорания должна была осуществляться турбонасосным агрегатом. Также двигатель оснастили отдельным контуром под изопропилнитрат: он должен был поступать в газогенератор и разлагаться на парогаз, который приводил в движение ТНА. Каждая камера двигателя С2.1100, по расчетам, давала по 17 т тяги – суммарно требуемые 68 т.

ПВРД второй ступени разрабатывался в ОКБ-670 М.М. Бондарюка. При кажущейся простоте конструкции, создание такого двигателя отличалось особой сложностью. Требовалось найти материалы, соответствующие тепловым нагрузкам от горения топлива, отработать аэродинамические процессы на входе и внутри двигателя, а также решить массу других задач. К 1957 г. все эти проблемы были успешно решены, результатом чего стал сверхзвуковой ПВРД, работающий на керосине и дающий на маршевом режиме тягу 7,55 т.

Средства управления

Над системой управления для «Бури», позже получившей название «Земля», работал филиал НИИ-1 МАП под руководством И.М. Лисовича и Т.Н. Толстоусова. В этом проекте использовались существующие наработки разных организаций. В частности, еще в сороковых годах исследования по этой теме проводились специалистами НИИ-88.

Целью проекта НИИ-1 МАП являлось создание системы, способной автоматически находить указанные звезды, отслеживать их положение и определять по нему собственные координаты. Для этого требовалось решить несколько вспомогательных задач, таких как создание т.н. искусственной вертикали или обеспечение помехоустойчивости во всех условиях. Также пришлось разрабатывать счетно-решающую машину, способную преобразовывать данные астрокоррекции в команды для автопилота.

Еще в 1952 г., до начала работа по МКР «350», был изготовлен опытный образец астронавигационной системы. Его испытания на самолете Ил-12 показали высокую точность удержания направления полета. В 1954-55 гг. эту систему усовершенствовали и вновь испытали. Летающая лаборатория на базе Ту-16 совершала полеты на высотах 10-11 км со скоростью 800 км/ч, и за 5-6 ч полета накапливалась ошибка в пределах 4-6 км.

После определенных доработок электромеханическая система навигации с инерциальными приборами и астрокоррекции была готова для установки на опытные ракеты. В 1957 г. началось изготовление опытных партий такой аппаратуры для монтажа на ракеты-прототипы.

Подтверждено испытаниями

Первый старт «Бури» был запланирован на 1 августа 1957 г., но не состоялся. Неполадки в системе подачи изопропилнитрата не позволили провести штатный запуск двигателя первой ступени. К счастью, приборы двигателя отработали правильно, и ракета не пострадала. После необходимых доработок, 1 сентября ее вновь подготовили к полету. На этот раз ракета сошла с пусковой установки, но система управления преждевременно дала команду на сброс газовых рулей первой ступени. Ракета потеряла управление и упала.

Затем имели место еще три неудачных запуска, в которых полет продолжался не более 60-80 сек. В мае 1958 г. «Буря» впервые взлетела штатно, заняла заданную высоту, сбросила блоки первой ступени и включила ПВРД. Скорость маршевой ступени достигла М=3. Далее имели место еще пять запусков со сбоями на старте или на разных участках траектории. Следующие четыре полета были успешными и показали, что ракета может разгоняться до 3,2М, лететь на дальность 5500 км и выполнять маневры, в т.ч. разворот на 180°.

В марте 1960 г. имел место последний отказ в полете с потерей ракеты. Затем, в марте и декабре, провели два пуска по мишеням на полигонах Камчатки. В первом случае «Буря» за 121 мин. долетела до района цели, после чего не смогла перейти в пикирование. Следующий и последний полет был полностью успешным. На дальности 6425 км изделие отклонилось от цели на 4-7 км.

Читать еще:  Что такое ракера на двигателе

В последних полетах использовались опытные ракеты с усовершенствованной двигательной установкой. На них использовались ЖРД С2.1150 с повышенной тягой и более компактный ПВРД РД-012У.

Задел на будущее

На ранних стадиях испытаний МКР «Буря» сталкивалась с различными техническими и конструктивными проблемами. С ними удалось справиться, и в дальнейшем ракета показывала высокий уровень характеристик – и способность решать реальные боевые задачи. По результатам дальнейшей доводки, совершенствования и внедрения новых компонентов ракета «350» вполне могла стать эффективным и успешным стратегическим оружием.

Однако в 1960 г. – по разным данным, в феврале или в декабре – Совмин распорядился прекратить работы по теме «Буря». Руководство страны решило, что межконтинентальные крылатые ракеты по своим возможностям и потенциалу уступают баллистическим комплексам. Одновременное развитие двух направлений посчитали невозможным и нецелесообразным.

«Буря» не прошла весь процесс доводки и не поступила на вооружение нашей армии. Однако и в этом случае проект дал самые заметные результаты. Для разработки новой МКР пришлось построить целый ряд научно-исследовательских объектов и провести массу исследований. Был собран большой объем информации об аэродинамике высоких сверхзвуковых скоростей, тепловых процессах и т.д.

Кроме того, создавались новые материалы и технологии. Большая часть подобных результатов проекта «Буря» в дальнейшем успешно использовалась при создании новых образцов авиационной и ракетной техники. Так, титан, жаропрочные стали и прочие материалы для «Бури» до сих пор активно применяются в конструкциях авиационной и иной техники. Современные технологии изготовления таких конструкций прямо восходят к наработкам ВИАМ и МВТУ середины пятидесятых годов.

Некоторые решения проекта С2.1100 позже использовались в новых проектах ракетных двигателей. Опыт создания прямоточных двигателей РД-012/012У тоже пригодился при разработке ряда новых изделий, таких как некоторые зенитные ракеты. Часть наработок прошлого может применяться и при создании современных гиперзвуковых вооружений.

Большое значение для нашей ракетной и авиационной техники имела разработка системы «Земля». Астронавигация наглядно показала свои возможности и благодаря этому в дальнейшем нашла применение в массе новых проектов. В частности, с ее помощью обеспечивается высокая точность стрельбы межконтинентальными баллистическими ракетами.

Таким образом, проект «Буря» / «350» / Ла-350 не смог решить свою главную задачу, и Советская армия не получила принципиально новое стратегическое вооружение с высочайшими характеристиками. В то же время, этот проект оставил массу научных данных и технического опыта, что поспособствовало дальнейшему развитию целого ряда направлений. Это означает, что «Буря» – несмотря на неудачное завершение проекта – создавалась не зря и принесла большую пользу, пусть даже и косвенно.

Достоинства и недостатки ПуВРД, сфера применения

Основными преимуществами пульсирующих воздушно-реактивных двигателей можно считать их простую конструкцию, что тянет за собой их невысокую стоимость. Именно эти качества и стали причиной их использования в качестве силовых агрегатов на военных ракетах, беспилотных самолетах, летающих мишенях, где важны не долговечность и сверхскорость, а возможность установки простого, легкого и дешевого мотора, способного развить нужную скорость и доставить объект к цели. Эти же качества принесли ПуВРД популярность среди любителей авиамоделизма. Легкие и компактные двигатели, которые при желании можно сделать самостоятельно или же купить по приемлемой цене, прекрасно подходят для моделей самолетов.

Недостатков у ПуВРД немало: повышенный уровень шума при работе, неэкономный расход топлива, неполное его сгорание, ограниченность по скорости, уязвимость некоторых конструктивных элементов, таки как входной клапан. Но, несмотря на такой внушительный перечень минусов, ПуВРД по-прежнему незаменимы в своей потребительской нише. Они – идеальный вариант для «одноразовых» целей, когда нет смысла устанавливать более эффективные, мощные и экономичные силовые агрегаты.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector