Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что управляем клапанами двигателя

Новая процедура проверки регулирующих клапанов

Пропорциональные интеллектуальные регулирующие клапаны играют важную роль в обрабатывающей промышленности. Однако точное определение производительности клапана может представлять собой сложную процедуру, для которой часто требуется значительное время простоя, а также вывод клапанов из эксплуатации.

Клапаны открываются и закрываются пропорционально, степень перемещения варьируется в зависимости от изменяемого сигнала от 4 до 20 мА, подаваемого на вход. Многие клапаны оснащены сигналом обратной связи, который показывает фактическое положение в процентах от полного открытия/закрытия. Этот выходной сигнал может представлять собой сигнал величиной от 4 до 20 мА или цифровую переменную HART, которая соответствует рабочему диапазону 0–100 % регулирующего клапана.

Другим ключевым показателем производительности клапана является давление, необходимое для перемещения клапана в требуемое положение. Например, можно запрограммировать клапан таким образом, чтобы при подаче сигнала 12 мА он был открыт на 50 %. Интеллектуальный электронный блок будет, по сути, являться интеллектуальным регулятором давления для увеличения или уменьшения давления, необходимого для перемещения элемента управления в нужное положение.

Использование изменяемого сигнала в мА с одновременным контролем выходного тока в мА или величины сигнала перемещения в процентах позволяет узнать, правильно ли работает регулирующий клапан в своем диапазоне. Аналогичным образом мониторинг и запись давления, подаваемого на конечный элемент управления, при изменении входного сигнала от 4 до 20 мА на клапане, является ключевым моментом для определения заедания клапана. Как правило, если клапан работает правильно, то соотношение между давлением и током в мА или положением клапана является линейным. Необходимость в дополнительном давлении часто может быть вызвана заеданием клапана, что будет отображено соответствующим образом на экране, если результаты измерений регистрируются и отображаются на графике. Запись этих сигналов позволяет документировать производительность клапана. Такую документированную проверку и результат часто называют «сигнатурой» клапана.

Как правило, клапаны оснащены простыми ручными индикаторами, которые позволяют приблизительно оценить процент хода для настройки во время работы. Тем не менее, этот индикатор не показывает, как будет работать клапан в динамических и изменяющихся условиях, и его точность не гарантируется.

Краткое описание типичного ожидаемого процесса работы клапана при подаче сигнала в миллиамперах:

  • 3,8 мА — клапан должен быть надежно закрыт
  • 4,0 мА — клапан должен оставаться закрытым
  • 4,2 мА — клапан должен немного сместиться с седла
  • 12 мА — клапан должен быть открыт на 50 %
  • 19,8 мА — клапан должен быть почти полностью открыт
  • 20,0 мА — клапан должен быть полностью открыт
  • 20,2 мА — клапан должен находиться в определенно открытом положении (остановка в состоянии покоя)

Устройство клапанного механизма

Для работы обычного двигателя необходимо минимум два клапана на каждый цилиндр. Один впускной и один выпускной. Сам клапан состоит из стержня и тарелки (головка). Место соприкосновения тарелки с ГБЦ называю седлом. Впускные клапаны имеют больший диаметр тарелки, чем выпускные. Это обеспечивает лучшее наполнение камеры сгорания топливовоздушной смесью.

Устройство клапанного механизма

Весь клапанный механизм состоит из следующих основных элементов:

  • впускной и выпускной клапаны;
  • направляющие втулки (обеспечивают точное направление движения клапанов);
  • пружина (возвращает клапан в исходное положение);
  • седло клапана (место соприкосновения тарелки с корпусом);
  • сухари (два сухаря обеспечивают опорную поверхность для пружины и фиксируют всю конструкцию);
  • маслосъемные колпачки или маслоотражательные кольца (не дает маслу попасть в цилиндр);
  • толкатель (передает нажимное усилие от кулачка распредвала).

Кулачки на распределительном вале нажимают на клапаны. Их возврат в исходное положение обеспечивается за счет пружины. Пружина крепится на стержне с помощью сухарей и тарелки пружины. Для гашения резонансных колебаний на стержне могут устанавливаться не одна, а две пружины с разносторонней навивкой.

Направляющие втулки клапанов

Направляющая втулка представляет собой деталь цилиндрической формы. Она снижает трение и обеспечивает ровный и правильный ход стержня. В работе эти детали также подвергаются нагрузкам и воздействию температуры. Поэтому для ее изготовления применяются износостойкие и жаростойкие сплавы. Втулки выпускного и впускного клапанов несколько отличаются друг от друга в связи с разницей в нагрузках.

Завершающим звеном механизма газораспределения является клапанная группа, которая включает в себя клапан, пружину, детали крепления клапана и пружины, направляющую втулку и седло клапана.

Клапанная группа работает при больших механических и тепловых нагрузках. Наиболее нагруженным является сопряжение «клапан-седло». Эти детали подвергаются наибольшим ударным воздействиям при посадке клапана в седло, и работают в условиях высоких температур.

Сопряжение «клапан-седло-направляющая втулка» работает при недостаточном смазывании и высокой скорости перемещения клапана, что вызывает их интенсивное изнашивание.

Исходя из условий, в которых работают детали этой группы ГРМ, к клапанной группе предъявляются следующие требования:

  • герметичное закрытие клапанов;
  • малое сопротивление рабочей смеси и отработавшим газам при впуске и выпуске (хорошая обтекаемость);
  • минимальная масса деталей;
  • высокая прочность и жесткость;
  • высокая тепловая стойкость;
  • эффективный отвод тепла от клапана (особенно для выпускного);
  • высокая износостойкость (особенно в сопряжении «втулка-клапан»);
  • высокая коррозийная стойкость в сопряжении «седло-клапан».

Клапаны

Клапаны открывают и закрывают впускные и выпускные отверстия в головке блока цилиндров. Основные элементы клапана: головка 12 и стержень 9 (рис. 1). Головку клапана иногда называют тарелкой клапана.
Плавный переход от головки к стержню снижает сопротивление потоку газов при их истечении через газообменные отверстия. Поскольку отработавшие газы удаляются через выпускной клапан при значительном давлении, головку этого клапана обычно выполняют меньшего диаметра, чему головку впускного клапана.
Температура головки выпускного клапана бензиновых двигателей достигает 800…900 ˚С, а в дизельных двигателях – 500…700 ˚С.
Температурная нагрузка на головки впускных клапанов значительно ниже, тем не менее она приводит к нагреву тарелки клапана до 300 ˚С.

Поэтому для изготовления выпускных клапанов применяются жаропрочные сплавы и материалы, в качестве которых обычно используют жаропрочные стали с большим содержанием легирующих присадок. В целях экономии дорогостоящих жаростойких материалов выпускные клапаны изготовляют из двух частей. При этом для головки используется жаростойкий материал, а для стержня – углеродистые стали.
Головка и стержень в данном случае соединяются между собой стыковой сваркой.

Для повышения коррозийной стойкости и уменьшения изнашивания в выпускных клапанах рабочие поверхности фаски, а в некоторых случаях и поверхность головки со стороны цилиндра наплавляют слоем твердого сплава толщиной 1,5…2,5 мм (рис. 1).

Так как впускные клапаны омываются свежим зарядом и находятся в более легких температурных условиях, к материалу впускных клапанов предъявляются менее жесткие требования и для их изготовления используются хромистые и хромоникелевые среднеуглеродистые стали.

Обтекаемость клапана, работоспособность его фасок во многом зависит от формы головки. Для впускных клапанов чаще используют головки плоской формы (см. рис. 1 и 2), отличающиеся простотой конструкции и достаточной жесткостью. В форсированных двигателях иногда применяют впускные клапаны с вогнутыми головками (см. рис. 1, в). Такие клапаны имеют меньшую массу, чем клапаны с плоской головкой и их движение вызывает меньшие инерционные нагрузки.

Головки выпускных клапанов выполняются или плоскими (рис. 1, 2 и 3, г), или выпуклыми (рис. 3, б). Выпуклая форма головки способствует улучшению обтекаемости клапана со стороны цилиндра и повышению его жесткости, но вместе с тем увеличивается и масса клапана, что отрицательно сказывается на его инерционности.

Читать еще:  Что такое предкамерный дизельный двигатель

Сопряжение между тарелкой (головкой) клапана и седлом осуществляется по фаске – специальному пояску на боковой поверхности головки. Угол наклона фаски у впускных клапанов для большинства двигателей составляет 45˚, а у выпускных – 45 и 30˚.
В процессе изготовления клапанов фаски головок шлифуют, а при установке на двигатель притирают к седлу. Ширина притертого пояска фаски для выпускных клапанов должна быть не менее 0,8 мм; для впускных клапанов допускается более узкий поясок, который, тем не менее, не должен прерываться по периметру окружности фаски.
Для обеспечения надежного контакта между клапаном и седлом по наружной кромке фаски клапана угол фаски клапана делают на 0,5…1˚ меньше угла фаски седла.

Коррозийный и механический износ фасок на клапане и седле резко снижает эффективность работы двигателя. На фасках выпускных клапанов в процессе работы постепенно откладывается нагар, который тоже препятствует герметичному закрыванию выпускного отверстия. Для предотвращения образования нагара на фасках выпускных клапанов и повышения их долговечности, в некоторых двигателях выпускной клапан в процессе работы принудительно проворачивается с помощью специального механизма (см. рис. 1, поз. 5).

Механизм принудительного вращения клапана (рис. 4) состоит из неподвижного корпуса 3, расположенных в углублениях этого корпуса пяти шариков 2 с возвратными пружинами 1, конической дисковой пружины 4, опорной тарелки 5 и пружины клапана 7.
Все детали в собранном состоянии скрепляются пружинным кольцом 6.

При открытии клапана от усилия пружины дисковая пружина 4, опирающаяся при закрытом клапане на буртик корпуса 3, деформируется и ложится на шарики 2, которые в это время располагаются в мелкой части углубления корпуса.
Под давлением пружины шарики перекатываются по углублению корпуса в более глубокую часть, поворачивая при этом коническую пружину 4, опорную тарелку 5, пружину клапана и сам клапан вокруг его оси.

После закрытия клапана, когда усилие пружины клапана уменьшается, коническая дисковая пружина 4 возвращается в исходное положение, при этом шарики освобождаются и возвратными пружинами 1 перемещаются в более мелкую часть углубления в корпусе 3, подготавливая механизм к следующему циклу работы.

В двигателях марок «ЗМЗ», «ЯМЗ» возможность проворачивания в процессе работы впускных и выпускных клапанов обеспечивается установкой между опорной тарелкой и сухарями промежуточной втулки (см. рис. 1, поз. 13; рис. 2, поз. 11; рис. 3, поз. 4).

Промежуточные втулки имеют небольшую контактную поверхность с подвижными опорными тарелками пружин, следовательно, трение между этими деталями невелико. Поэтому при открытии клапана вследствие вибрации всех деталей механизма клапан периодически поворачивается.

Ниже фаски головка клапана имеет цилиндрический поясок, который предохраняет ее от обгорания, сохраняет диаметр тарелки клапана при перешлифовке и обеспечивает жесткость головки.

Для предотвращения падения клапана в цилиндр при поломке хвостовика стержня или клапанной пружины, на его стержне может устанавливаться пружинное стопорное кольцо (см. рис. 3, д, поз. 1).

Торцы стержней (пятки клапанов), находящиеся в контакте с коромыслом или кулачком, подвергаются закаливанию. В некоторых двигателях вместо закаливания на концы стержней надеваются колпачки (см. рис. 1, поз. 21) из износостойких материалов и сплавов.

На стержень впускных клапанов надевают резиновый колпачок (см. рис. 3, е, поз. 5), который во время такта впуска препятствует проходу масла в камеру сгорания через зазор между стержнем и направляющей втулкой клапана.

Для предотвращения заклинивания выпускных клапанов в отверстии направляющей втулки при температурном расширении, их стержни вблизи головки выполняют несколько меньшего диаметра, чем по остальной длине.

Для крепления клапанных пружин на конце стержня выполняются одна или две выточки, в которые при сборке входят выступы сухарей 2 (рис. 3, д, е).

Для понижения температуры выпускных клапанов диаметр их головок уменьшают, а диаметр стержня увеличивают. Такое техническое решение позволяет повысить тепловую стойкость клапана, но увеличивает сопротивление потоку выпускаемых газов. Впрочем, поскольку выброс отработавших газов из цилиндра осуществляется под значительным давлением (по сравнению с давлением впуска), то этим недостатком пренебрегают.

Более эффективным является способ принудительного охлаждения выпускных клапанов. Для этого стержень выпускного клапана делают пустотелым (см. рис. 1, а, в) и заполняют металлическим натрием, который имеет низкую температуру плавления (97 ˚С). При работе жидкий натрий, нагреваясь от головки клапана, испаряется, поглощая большое количество теплоты. Поднявшись в верхнюю часть стержня, пары натрия конденсируются и передают теплоту верхней части стержня, которая работает в менее теплонапряженных условиях.

Клапанные пружины

Клапанная пружина должна обеспечивать плотную посадку клапана в седло. Она работает в условиях резко меняющихся динамических нагрузок, способных вызвать резонанс и последующую поломку пружины.
Чаще всего применяют цилиндрические винтовые пружины с постоянным шагом витков.
Для предотвращения резонансных явлений могут применяться пружины с переменным шагом, конические пружины и двойные пружины. При использовании двойных пружин возрастает надежность работы ГРМ и уменьшается общий размер пружин.
Направление витков внутренней и внешней пружин выполняют разным, чтобы исключить резонанс и, в случае поломки одной из пружин, предотвратить попадание обломков между витками второй пружины.

Клапанные пружины изготавливают навивкой проволоки из пружинной стали. После навивки пружины подвергаются термической обработке (закалка и отпуск), а для повышения усталостной прочности обдуваются стальной дробью.

Концевые витки пружин шлифуются для получения плоской кольцевой опорной поверхности. Для повышения коррозионной стойкости пружины оксидируют, оцинковывают и кадмируют.

Пружины опираются на головку блока цилиндров через специальные неподвижные тарелки (см. рис. 2, поз. 4), которые штампуются, как и верхние подвижные тарелки из малоуглеродистой стали. Верхняя тарелка пружины фиксируется на клапане с помощью сухарей.

Направляющие втулки клапанов

Направляющая втулка обеспечивает перемещение клапана и отвод теплоты от его стрежня во время работы. При этом нижний конец самой втулки (особенно выпускного клапана) омывается горячими газами. При недостаточном поступлении смазочного материала в зазоры между стержнем клапана и внутренней поверхностью втулки трение между этими деталями приближается к полусухому.
По этой причине к материалу направляющих втулок предъявляются требования высокой износостойкости, достаточной жаростойкости и хорошей теплопроводности. Кроме того, он должен обладать высокими антифрикционными качествами. Этим требованиям удовлетворяют перлитные серые чугуны, алюминиевые бронзы, спекаемая хромистая или хромоникелевая керамика. Пористая структура данных материалов хорошо удерживает смазочный материал.

Для фиксации в головке блока цилиндров втулки выполняются с выточкой под пружинное кольцо (см. рис. 3, а, поз. 1) или с наружными заплечиками.

Зазор между направляющей втулкой и стержнем клапана для впускных клапанов устанавливается меньше, чем для выпускных, из-за разной температуры нагрева. Для предотвращения заклинивания клапана во втулке при высокой температуре и перекоса (в приводе клапана непосредственно от распределительного вала) нижнюю внутреннюю поверхность втулки выполняют конусной (см. рис. 3, г) или уменьшают диаметр стержня клапана у головки (см. рис. 1, б).

Седла клапанов

Седло клапана обеспечивает долговечность контактной зоны клапана с головкой блока цилиндров. В головках из алюминиевого сплава используют стальные седла, а в чугунных головках они растачиваются непосредственно в теле (см. рис. 2, а). Для изготовления вставных седел используют специальные легированные чугуны или жаростойкие стали. Для повышения износостойкости фаски седел выпускных клапанов наплавляются слоем твердого сплава (см. рис. 1, поз. 18).

Седло представляет собой кольцо с цилиндрической или конической наружной поверхностью. Крепится седло в головке с натягом при запрессовке или путем расчеканивания головки (см. рис. 3, к). Стальные седла могут крепиться развальцовкой верхней части седла (см. рис. 3, л). При креплении седел запрессовкой на их наружной поверхности часто выполняются кольцевые проточки (см. рис. 3, з, и), которые в процессе запрессовки заполняются металлом головки.

Читать еще:  Двигатель a14net какой бензин лить

Цилиндрические седла вставляются до упора, а конические – с небольшим торцевым зазором.

Для получения надежного уплотнения поясок седла шириной около 2 мм выполняют с переменным углом (см. рис. 3, ж).

Признаки отказа механизма EGR

На старых автомобилях, выпущенных до 2000 года, отказ данного устройства может никак себя не проявлять. На более современных авто отказ EGR можно вычислить по следующим признакам:

  • Загорается сигнализатор Check Engine;
  • «Плавают» холостые обороты;
  • Расход топлива возрастает;
  • Двигатель теряет былую мощность или, наоборот, становится слишком резвым;
  • Снижается приемистость двигателя при разгоне;
  • Становится заметной детонация двигателя;
  • Слышен шум из двигателя, которого раньше не было.

На компьютерной диагностике или при помощи автосканера легко определяется отказ механизма EGR.

Что управляем клапанами двигателя

Надёжное функционирование ЖРД и ДУ обеспечивают разработанные на предприятии и изготовляемые серийно агрегаты автоматики: различные типы клапанов, регуляторы, дроссели, редукторы и стабилизаторы.

Все они отличаются разнообразием, как по конструктивному исполнению, так и по способу установки в схему изделия. Многие из них работоспособны в средах агрессивных высококипящих и криогенных компонентов топлива с давлением до 60 МПа и различных газов с давлением до 35 МПа.

В качестве приводов используются сжатый газ, электрический ток и пиропатроны.

В пускоотсечных агрегатах применены уплотнения, обеспечивающие самые высокие требования по герметичности при давлениях до 35 МПа.

Более сотни технических решений, заложенных в конструкцию агрегатов автоматики, защищены авторскими свидетельствами на изобретение.

Назначение агрегатов регулирования состоит в том, чтобы поддерживать основные параметры двигателя или двигательной установки, а именно тягу, соотношение компонентов топлива камеры сгорания и газогенератора и давления наддува баков с топливом в заданных пределах.

Поддержание этих параметров обеспечивает высокие удельные параметры не только ДУ или двигателя, но и ракеты.

Система регулирования, состоящая из агрегатов регулирования, повышает надёжность функционирования двигателей, т.к. отклонения параметров узлов, входящих в состав двигателей, связанных с их изготовлением и эксплуатации, а также различие свойств топлива, не снижает точности поддержания тяги и соотношения компонентов топлива сверх указанных в требованиях ракетных фирм.

Основные задачи, которые приходится решать при проектировании и отработке агрегатов регулирования и автоматики для ЖРД:

  • обеспечение надёжной работоспособности конструкции при минимальном весе согласно требованиям ТЗ;
  • обеспечение необходимой точности срабатывания автоматов и поддержание регулируемых параметров;
  • обеспечение требуемых параметров агрегатов регулирования и автоматики для получения заданного по времени выхода двигателя на режим и его останов;
  • обеспечение требуемых параметров агрегатов регулирования для получения необходимой динамической устойчивости систем по регулированию тяги и соотношению компонентов топлива двигателя.

Регуляторы тяги

Регуляторы тяги обеспечивают поддержание давления или расхода компонентов топлива, поступающих в камеру сгорания или газогенератор. Двигатели КБхиммаш отличаются широким диапазоном тяг, поэтому диапазон по расходу высокотемпературных компонентов топлива составляет от 0,05 кг/с до 13 кг/с, величина регулируемого давления составляет от 50 кгс/см 2 до 200 кгс/см 2 при рабочем давлении от 75 кгс/см 2 до 350 кгс/см 2 .

Стабилизаторы давления

Система регулирования соотношения компонентов топлива двигателя обеспечивает с высокой точностью постоянное значение соотношения компонентов топлива в камере сгорания, и, следовательно, минимальные гарантийные запасы топлива, заправляемые в баки ракеты.

Диапазон по расходу стабилизаторов давления составляет от 0,75 кг/с до 44 кг/с. Точность поддержания параметра 2%.

Система регулирования соотношения компонентов топлива в газогенераторе обеспечивает заданную температуру газа на входе в турбину ТНА при работе двигателя, что является важным для надёжной работы.

Диапазон по расходу стабилизаторов давления составляет от 0,02 кг/с до 0,2 кг/с. Точность поддержания параметра 2%.

Дроссели

Разрабатываемые КБхиммаш дроссели обеспечивают изменение расхода компонента топлива в камеру сгорания или газогенератор для двигательных систем СОБ, РКС и РСК.

Редукторы давления

Газовые редукторы, работающие на воздухе, азоте и гелии, применяются для наддува баков с компонентами топлива при наличии ТНА или для подачи топлива в камеру сгорания без ТНА, для систем командного управления давлением и систем с воздушным автопилотом.

Диапазон расходов по воздуху от 4 до 120 г/с при начальном давлении на входе £ 400 кгс/см 2 . Регулируемое давление от 2 кгс/см 2 до 50 кгс/см 2 .

Основным параметром системы регулирования, помимо точности поддержания давления или расхода, является динамическая устойчивость системы регулирования при высоких энергетических характеристиках двигателя, заданных условиями выхода на режим и длительности работы. Теоретически динамическую устойчивость систем проверяют на моделях, имитирующих двигатель. Окончательная динамическая устойчивость системы проверяется в составе работающего двигателя или двигательной установки. Отработка каждой системы требует значительных средств и времени.

Суммарное количество агрегатов регулирования товарных двигателей, разработанных в КБхиммаш за 50 лет составляет 320 наименований.

Сегодня современные ЖРД представляют собой сложнейшую систему, которая обеспечивает не только необходимый тяговый и удельный импульсы, но и дросселирование тяги (многорежимность), управление вектором тяги, управляемый запуск, работу и останов двигателя в определенном временном интервале, обеспечивает функционирование многих агрегатов ракеты. Исходя из сложности поставленных задач современная двигательная установка содержит до 6 агрегатов регулирования и до 20 агрегатов автоматики.

Назначение агрегатов автоматики, различные конструкции клапанов, состоит в том, чтобы обеспечить подачу компонентов топлива в двигатель, камеру сгорания, ТНА, газогенератор при запуске и отсечку компонентов при останове двигателя, обеспечить дренирование необходимых полостей двигателя в паузах между включениями и после останова, а также обеспечить длительное хранение заправленного ДУ без нарушения герметичности.

Заправочные горловины и клапана входа

Для заправки изделий компонентами топлива разработаны горловины, которые в настоящее время эксплуатируются на различных изделиях отрасли.

Для ЖРД отработаны многоразовые и одноразовые клапаны входа, которые обеспечивают длительное хранение компонентов заправленного изделия и при срабатывании обеспечивают подачу компонентов топлива в ЖРД.

Пускоотсечные клапаны

Для выполнения различных условий работы ЖРД и ДУ разработаны многофункциональные пускоотсечные клапаны, предохранительные клапаны с высокой точностью настройки от 2 кгс/см 2 до 50 кгс/см 2 , обратные клапаны и редукционные клапаны.

Пневмогидроузлы

Для подачи компонентов топлива иди газа к потребителю разработаны: пневмоузлы – ЭПК прямого и непрямого действия, гидроузлы – ЭЖК, которые по электрической команде осуществляют подачу или прекращение подачи топлива в ЖРД; газовые дроссели для подачи газа на рулевые сопла ДУ.

Пироузлы

За период с 1959 года. По настоящее время были разработаны различные модификации пусковых и отсечных клапанов, предназначенный для подачи и отсечки рабочего тела в жидкостных или газовых магистралях ЖРД и работающих в широком диапазоне давлений и температур. Пироклапаны установлены практически во все изделия КБхиммаш и отличаются высокой степенью надёжности и герметичности, как до срабатывания за счёт оригинальной конструкции запорного органа, выполненного в виде полого стакана со срезаемым дном, так и после срабатывания, которая обеспечивается конической пробкой с канавками (ёрш).

Многие конструкции пусковых и отсечных пироклапанов защищены авторскими свидетельствами и патентами.

В двигателях КБхиммаш с ограниченным числом включений до 6 широко применяются пороховые и пиротехнические устройства, а именно:

  • пусковые камеры для начальной раскрутки ТНА;
  • пироузлы для дистанционного приведения в действие различных клапанов (взведение, пуск, останов), для вскрытия сопловых заглушек, для дистанционного зажигания других пороховых узлов;
  • устройства для зажигания несамовоспламеняющихся компонентов топлива (например Н 2 + О 2 );
  • узлы, используемые для замедления импульса (пирочасы).

Отличительной особенностью пиротехнических узлов является:

  • компактность и простота по сравнению с жидкостными, электропневматическими и механическими источниками энергии;
  • высокая удельная мощность;
  • постоянная готовность к работе;
  • быстродействие (миллисекунды);
  • длительный срок службы (до 30 лет).

Для различных двигателей с турбонасосной системой подачи тягой от 200 до 60000 кгс на предприятии разработано и сдано в серийное производство около 50-и типов высоконапорных ТНА со сверхвысокой всасывающей способностью, использующих в качестве рабочих жидкостей высококипящие и криогенные компоненты топлива, с напорами от 5 до 60 МПа, расходами от 0,15 до 150 кг/сек, оборотами до 60000 об/мин и коэффициентами С кр от 4000 до 10000.

Многие конструкторско-технологические решения, заложенные в конструкции ТНА, являются оригинальными и приоритетными. К ним относятся:

Управление противопожарными и дымовыми клапанами

Содержание статьи:

При разработке проекта вентиляционных противодымных систем и средств противопожарной безопасности общеобменных систем необходимо учитывать требования и нормы официальных документов — ФЗ, техрегламентов, СП, ГОСТ, СНиП и т. д.

В частности, при капитальной реконструкции функционирующих зданий промышленного, общественного, бытового, админстративного назначения возможно использование имеющихся отопительных, вентиляционных сетей, включая противодымные вентиляционные каналы, при условии соответствия требованиям нормативно-технической базы.

Вентиляционные противодымные сети необходимо делать независимыми для каждого пожарного отсека, за исключением приточной противодымной вентсистемы, защищающей лестничные проёмы и шахты лифтов, которые соединяются с несколькими пожарными отсеками. Приточные дымозащитные вентсистемы необходимо использовать только в комплексе с вытяжной дымозащитной вентиляцией. Автономная эксплуатация приточных противодымных вентиляционных систем без обустройства вытяжных контуров запрещена.

  • Федеральный закон от 22 июля 2008 г. № 123-ФЗ “Технический регламент о требованиях пожарной безопасности”;
  • ГОСТ Р 53325-2012 “Техника пожарная. Технические средства пожарной автоматики. Общие технические требования и методы испытаний”;
  • СП 7.13130.2013 “Отопление, вентиляция и кондиционирование. Требования пожарной безопасности”.

Нормально-Открытые – НО

Противопожарные нормально открытые клапаны (НО) нужны для создания препятствия распространения огня и вредных продуктов горения по шахтам и вентиляционным каналам общеобменной вентиляции, кондиционирования воздуха и воздушного отопления (в соответствии с шестым разделом Свода Правил 7.13130 2013 и п. 7 13 а. Пункт 6.24 гласит, что на объектах, где имеются средства пожаротушения и/или пожарная сигнализация, необходимо организовать автоматическое отключение всех систем в общеобменных вентиляционных сетях и других климатических системах при возгорании. А нормально-открытые огнезадерживающие клапаны должны закрываться.

Отключение вентиляционных сетей и перекрывание каналов огнезадерживающими клапанами надо производить по сигналам, которые поступают от системам автоматического тушения пожаров и/или сигнализации, а так же при запуске противодымной вентиляции (п. 7.19)

Заслонка противопожарных нормально-открытых клапанов стандартно открыта, но при возгорании в помещении должна закрываться, создавая неразрывность противопожарного барьера.

Нормально-Закрытые – НЗ

Нормально закрытые клапаны (НЗ) могут использоваться как противопожарные, так и как дымовые, в зависимости от типа противодымной вентиляции (приточная или вытяжная) (пункты 7.11в, 7.11д). Так же возможно применение в контурах удаления дыма и газа после возгораний в закрытых пространствах, где установлено оборудование газового или порошкового тушения пожара.

По умолчанию, заслонка клапанов дымоудаления находятся в закрытом состоянии. При возгорании, с помощью управляющего механизма, открывается, чтобы обеспечить поступление воздуха в защищаемые помещения (в частности, тамбурные шлюзы), а также удаления дыма и газов, после применения средств газового и порошкового тушения пожара.

В противодымных вентсистемах нормально закрытые клапаны необходимо открывать в задымлённых помещениях, а в других зонах (в частности, на других этажах многоэтажного здания) они должны находиться в закрытом состоянии, чтобы дать возможность организовать поступление воздуха в канал удаления дыма.

Чтобы регулировать положение заслонок клапанов огнезадерживающих НЗ и дымовых клапанов, устанавливаются приводы, которые управляются подачей напряжения. Это электромагнитные и реверсивные электрические приводы. В соответствии с п 7.19, приводы клапанов НЗ должны обеспечивать заданное положение заслонок при отключении их электроснабжения. Кроме того, в соответствии с п. 12.4 Свода Правил 60 13330 от 2012 года – противодымные и противопожарные клапаны, дымовые люки, зенитные фонари и другое регулируемое оборудование противодымной защиты, создающее преграду в шахтах, воздуховодах и окнах, необходимо оснащать средствами автоматической, удалённой и ручной регулировки.

На огне- и дымозащитных клапанах могут быть установлены три вида электроприводов:

  • электромеханические с возвратным механизмом (с датчиком температуры и без)
  • реверсивные – без возвратной пружины
  • электромагнитные (с тепловым замком и без)

При подборе вида электропривода и вспомогательных устройств (в частности, тепловых замков), которые обеспечивают работу клапана, стоит обратить внимание на несколько факторов:

  • Предназначение клапана (НО, НЗ, дымовой);
  • Требования нормативной базы к методам регулирования и срабатывания клапана в случае возгорания;
  • Место монтажа клапана, учитывая удобство эксплуатации, проверки и технического обслуживания;
  • Эксплуатационная цена оборудования.

Все виды приводов обеспечивают автоматическое, удалённое и локальное регулирование заслонок клапанов согласно нормативной базе при правильной работе управляющей системы.

Противопожарные электроприводы с возвратной пружиной монтируются на огнезащитные клапаны НО (нормально-открытые). Управление срабатыванием клапанов с таким типом сервоприводов происходит при помощи передачи электрического сигнала от автоматики систем пожарной безопасности или от диспетчера, в результате цепь подачи напряжения (24/230 Вольт) прерывается. Затем возвратная пружина довольно быстро перемещает заслонку из начального в защитное состояние.

При повторной подаче электрического сигнала на привод, снова поступает питание (24В или 220В) на электрический двигатель, который осуществляет перевод заслонки в начальное состояние и удерживает её в нём, при этом потребляемая мощность является минимальной.

Разновидности электромагнитных клапанов

Физически работа электромагнитного клапана состоит в перекрытии проходного отверстия в корпусе клапана мембраной под воздействием перемещения сердечника и связанных с ним деталей при поступлении напряжения на обмотку катушки. Различают два типа клапанов – прямого действия и пилотные. Первые применяются в основном для трубопроводов небольшого расхода. В них перекрытие или открывание отверстия осуществляется непосредственно за счет электромагнитного усилия соленоида, преодолевающего сопротивление возвратной пружины. В клапанах пилотного действия срабатывание происходит за счет энергии потока жидкости в трубопроводе, перенаправляемом при перекрытии или открывании перепускных (пилотных) отверстий после подачи напряжения на соленоид. Такие клапаны применяются в трубопроводах большого расхода и требуют наличия в магистрали некоторого минимального напора (давления), как правило, порядка 0,2 атм.

По логике работы электромагнитные клапаны делятся на нормально открытые, нормально закрытые и переключающиеся – переходящие в другое положение при каждой новой подаче напряжения на катушку. Обмотки катушек рассчитаны на питание различным постоянным или переменным напряжением.

Для трубопроводов небольших диаметров в основном используется резьбовое присоединение клапанов, для больших диаметров используется фланцевое присоединение и приварное.

По характеру функционирования электромагнитные клапаны бывают одноходовыми, двухходовыми, трех- и четырехходовыми. Последние два варианта используются в трубопроводных системах как разделительные и смесительные.

Существуют также специальные взрывозащищенные конструкции для особых условий.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector