Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая схема драйвера двигателя

Для чего нужен драйвер двигателя?

Как известно, плата ардуино имеет существенные ограничения по силе тока присоединенной к ней нагрузки. Для платы это 800 mA, а для каждого отдельного вывода – и того меньше, 40mA. Мы не можем подключить напрямую к Arduino Uno, Mega или Nano даже самый маленький двигатель постоянного тока. Любой из этих двигателей в момент запуска или остановки создаст пиковые броски тока, превышающие этот предел.

Как же тогда подключить двигатель к ардуино? Есть несколько вариантов действий:

Использовать реле. Мы включаем двигатель в отдельную электрическую сеть, никак не связанную с платой Arduino. Реле по команде ардуино замыкает или размыкает контакты, тем самым включает или выключает ток. Соответственно, двигатель включается или выключается. Главным преимуществом этой схемы является ее простота и возможность использовать Главным недостатком данной схемы является то, что мы не можем управлять скоростью и направлением вращения.

Использовать силовой транзистор. В данном случае мы можем управлять током, проходящим через двигатель, а значит, можем управлять скоростью вращения шпинделя. Но для смены направления вращения этот способ не подойдет.

Использовать специальную схему подключения, называемую H-мостом, с помощью которой мы можем изменять направление движения шпинделя двигателя. Сегодня можно без проблем найти как микросхемы, содержащие два или больше H-моста, так и отдельные модули и платы расширения, построенные на этих микросхемах.

В этой статье мы рассмотрим последний, третий вариант, как наиболее гибкий и удобный для создания первых роботов на ардуино.

Микросхема или плата расширения Motor Shield

Motor Shield – плата расширения для Ардуино, которая обеспечивает работу двигателей постоянного тока и шаговых двигателей. Самыми популярными платами Motor Shield являются схемы на базе чипов L298N и L293D, которые могут управлять несколькими двигателями. На плате установлен комплект сквозных колодок Ардуино Rev3, позволяющие устанавливать другие платы расширения. Также на плате имеется возможность выбора источника напряжения – Motor Shield может питаться как от Ардуино, так и от внешнего источника. На плате имеется светодиод, который показывает, работает ли устройство. Все это делает использование драйвера очень простым и надежным – не нужно самим изобретать велосипеды и решать уже кем-то решенные проблемы. В этой статье мы будем говорить именно о шилдах.

Принцип действия H-моста

Принцип работы драйвера двигателя основан на принципе работы H-моста. H-мост является электронной схемой, которая состоит из четырех ключей с нагрузкой. Название моста появилось из напоминающей букву H конфигурации схемы.

Схема моста изображена на рисунке. Q1…Q4 0 полевые, биполярные или IGBT транзисторы. Последние используются в высоковольтных сетях. Биполярные транзисторы практически не используются, они могут присутствовать в маломощных схемах. Для больших токов берут полевые транзисторы с изолированным затвором. Ключи не должны быть замкнуты вместе одновременно, чтобы не произошло короткого замыкания источника. Диоды D1…D4 ограничительные, обычно используются диоды Шоттки.

С помощью изменения состояния ключей на H-мосте можно регулировать направление движения и тормозить моторы. В таблице приведены основные состояния и соответствующие им комбинации на пинах.

Q1Q2Q3Q4Состояние
11Поворот мотора вправо
11Поворот мотора влево
Свободное вращение
11Торможение
11Торможение
11Короткое замыкание
11Короткое замыкание

Драйвер шагового двигателя своими руками

Драйвер шагового двигателя своими руками — хотя биполярные шаговые двигатели относительно дороги, для своих физических размеров они обеспечивают высокий вращающий момент. Однако для двух обмоток мотора требуется восемь управляющих транзисторов, соединенных в четыре Н-моста. Каждый транзистор должен выдерживать перегрузки и короткие замыкания и быстро восстанавливать работоспособность. А драйверу, соответственно, требуются сложные схемы защиты с большим количеством пассивных компонентов.

Читать еще:  Щелчок при запуске холодного двигателя


Рисунок 1

Рисунок 1. Одна микросхема в корпусе для поверхностного монтажа и несколько пассивных компонентов могут управлять биполярным шаговым двигателем.

Управление биполярным шаговым двигателем

Драйвер шагового двигателя своими руками — на Рисунке 1 показана альтернативная схема драйвера двигателя, основанная на аудио усилителе класса D компании Maxim. Микросхема МАХ9715 в миниатюрном корпусе для поверхностного монтажа может отдавать мощность до 2.8 Вт в типичную нагрузку 4 или 8 Ом. Каждый из двух выходов микросхемы образован Н-мостами из мощных MOSFET, управляющими парами линий OUTR+, OUTR- и OUTL+, OUTL-, которые подключаются к обмоткам А и В шагового двигателя, соответственно. Каждая пара формирует дифференциальный широтно-модулированный импульсный сигнал с номинальной частотой переключения 1.22 МГц. Малый уровень помех, создаваемых схемой, исключает необходимость в выходных фильтрах.

Конденсаторы развязки

Конденсаторы С1, С3, С4 и С6 служат развязкой для входов питания и смещения, а С5 и С7 выполняют накопительные функции для мощных выходных усилителей класса D. Конденсаторы С8 и С9 ограничивают полосу пропускания усилителя до 16 Гц, а ферритовые бусины L2 и L3 ослабляют электрические помехи, наводимые на длинные кабели. П-образный фильтр C1, C2, L1 подавляет помехи на входе питания микросхемы IС1. Входные сигналы микросхемы Шаг_А и Шаг_В, управляющие, соответственно, правым и левым каналами двигателя, могут формироваться любым подходящим контроллером. Внутренние цепи защищают усилитель от коротких замыканий и перегрева в случае неисправности шагового двигателя или неправильного подключения его выводов.


Таблица 1

Иллюстрация последовательности импульсов

Таблица 1 иллюстрирует последовательность импульсов Шаг_А и Шаг_В, управляющих вращением типичного шагового двигателя в одном направлении путем непрерывной подачи комбинаций сигналов от 0 до 4. Шаг 4 возвращает вал двигателя в исходное положение, завершая оборот в 360°. Чтобы изменить направление вращения мотора, начинайте формировать временную диаграмму импульсов снизу таблицы и последовательно двигайтесь по ней вверх. Подав напряжение низкого логического уровня на вход SHDN микросхемы (вывод 8), можно отключить оба канала усилителя. Формы сигналов на входах и выходах схемы представлены на Рисунке 2.


Рисунок 2

Формы сигналов в схеме на Рисунке 2: вход Шаг_А (Канал 1), вход Шаг_В (Канал 2), выходы OUTR+ (Канал 3), OUTR- (Канал 4) и сигнал на обмотках двигателя (OUTR+ минус OUTR-, средняя осциллограмма), вычисленный с помощью математической функции осциллографа.

Схема драйвера с L298 – полная версия

Драйвер L298 может работать с напряжением до 46 В и токами до 2 А на канал (всего 4А) в непрерывном режиме, хотя лучше не превышать общую мощность. С двигателями мощностью более 10 Вт лучше всего установить радиатор, как показано на фотографии.

Давайте проанализируем работу электронных схем драйверов в двух версиях. Помимо микросхемы L298 в схемах использованы несколько дополнительных компонентов. Логической части L298 требуется источник питания на 5В, и поэтому использован стабилизатор напряжения 78L05, который является маломощным вариантом классического 7805. Стабилизатор 78L05 обеспечивает максимальный выходной ток до 100 мА, что более чем достаточно для наших целей.

Для того чтобы визуально отслеживать направление вращения каждого двигателя, в схеме использованы два светодиода (красный и желтый), соединенные встречно-параллельно. На схеме мы также можем видеть 8 диодов для защиты от выбросов ЭДС самоиндукции.

Для этих диодов лучшим выбором будут диоды Шоттки, особенно, в случае если мы используем драйвер для управления двигателями средней мощности или управляем частотой вращения двигателя с помощью ШИМ (широтно-импульсная модуляция). В простых же схемах — диодов типа 1N4007 будет достаточно.

Читать еще:  Двигатель ld20 на что заменить

Список необходимых компонентов (упрощенная версия):

  • 4 резистора по 100 Ом;
  • 2 резистора по 1,8 кОм;
  • 1 конденсатор емкостью 100 нФ;
  • 2 электролитических конденсатора на 22 мкФ;
  • 8 диодов 1N4007;
  • 2 желтых светодиода;
  • 2 красных светодиода;
  • 1 стабилизатор 78L05;
  • 1 драйвер L298.

Управляющие входы обеих версий работают с логикой 5В (TTL), хотя мы можем без проблем управлять сигналами управления на 3,3В. Резисторы, с сопротивлением 100 Ом на входах, служат только для защиты и могут быть заменены перемычками из проволоки.

Ниже в таблицах истинности мы видим логику управления. У упрощенной модели есть два управляющих входа для каждого двигателя (MA и MB), в то время как в полной версии у нас еще есть вход разрешения (ENA).

С нашем случае на данные входы не нужно дополнительно подавать сигнал, поскольку к ним уже подключены подтягивающие резисторы по 4,7кОм. Для того чтобы отключить мост, нам просто необходимо снизить напряжение до 0 В.

Список необходимых компонентов (полная версия):

  • 6 резисторов по 100 Ом;
  • 2 резистора по 4,7 кОм;
  • 2 резистора по 1,8 кОм;
  • 1 конденсатор на 100 нФ;
  • 2 электролитических конденсатора 22 мкФ;
  • 8 диодов 1N4007;
  • 2 желтых светодиода;
  • 2 красных светодиода;
  • 1 стабилизатор 78L05;
  • 1 драйвер L298.

Полная версия драйвера включает в себя два H-моста, которые управляют двигателями, измеряя ток потребления. Если эта функция не нужна, вы можете просто установить перемычки. Если же нам необходимо контролировать ток потребляемый двигателями, то необходимо на место перемычек установить шунтирующие резисторы и подключить соответствующую измерительную систему между контактами.

Есть некоторые причины, по которым может быть полезно измерять ток двигателей: одна из них заключается в обнаружении чрезмерного потребления тока двигателями, как в случае с мобильными роботами, когда у них блокируются колоса. Другая причина более сложная и заключается в обеспечении обратной связи для высококачественного управления ШИМ.

Как бы там ни было, для их реализации потребуется дополнительная схема для усиления сигнала с шунтирующих резисторов и специальное программное обеспечение для микроконтроллера. Но это уже выходит за рамки данной статьи.

Данная печатная плата также может быть использована для управления шаговым двигателем, но поскольку каждый шаговый двигатель для работы нуждается в двух мостах, мы можем подключить только один двигатель к плате.

3 Скетч для управления коллекторным двигателем

Напишем скетч для управления коллекторным двигателем. Объявим две константы для ножек, управляющих двигателем, и одну переменную для хранения значения скорости. Будем передавать в последовательный порт значения переменной Speed и менять таким образом скорость (значением переменной) и направление вращения двигателя (знаком числа).

Загрузим скетч в память Arduino. Запустим его. Вал двигателя не вращается. Чтобы задать скорость вращения, нужно передать в последовательный порт значение от 0 до 255. Направление вращения определяется знаком числа.

Подключимся с помощью любой терминалки к порту, передадим число «100» – двигатель начнёт вращаться со средней скоростью. Если подадим «минус 100», то он начнёт вращаться с той же скоростью в противоположном направлении.

Управление электромотором с помощью драйвера двигателей и Arduino

А вот так выглядит подключение подключение коллекторного двигателя к Arduino в динамике:

L293D

L293D представляет собой четыре сильноточных драйвера из половин Н-мостов. Она предназначена для управления двунаправленными приводами с токами до 600 мА и напряжениями от 4,5 В до 36 В. Микросхема предназначена для управления индуктивными нагрузками, такими как реле, соленоиды, двигатели постоянного тока, шаговые двигатели, а также другими нагрузками, требующими высокого тока/напряжения в приложениях с положительным питанием. Все входы TTL совместимы. Драйверы включены в пары: драйверы 1 и 2 включаются выводом 1,2EN, а драйверы 3 и 4 включаются выводом 3,4EN. Когда на разрешающий вход подается высокий логический уровень, соответствующие драйверы включаются, их выходы становятся активными, а их состояние синфазно соответствующим входам. Когда на разрешающий вход подается низкий логический уровень, эти драйверы выключаются, их выходы отключаются и остаются в состоянии высокого сопротивления. При правильных сигналах на входах каждая пара драйверов формирует полный Н-мост, способный управлять направлением в приложениях с электродвигателями и соленоидами.

Читать еще:  Двигатель hr15de какое масло лить

Схема логики микросхемы L293D

Таблица истинности (для каждого драйвера)

ВходыВыход
Y
AEN
HHH
LHL
XLZ

H – высокий уровень; L – низкий уровень; X – не имеет значения; Z – высокое сопротивление (выключен).

Назначение выводов

Распиновка микросхемы L293D

Назначение выводов микросхемы L293D

ВыводНазваниеНазначение
1En1,2Вывод включения для управления драйверами 1 и 2
2Вход 1AВход для управления 1Y
3Выход 1YВыход, подключается к двигателю
4GNDЗемля и теплоотвод
5GNDЗемля и теплоотвод
6Выход 2YВыход, подключается к двигателю
7Вход 2AВход для управления 2Y
8Vcc2Источник питания для драйверов 4,5–36 В
9En3,4Вывод включения для управления драйверами 3 и 4
10Вход 3AВход для управления 3Y
11Выход 3YВыход, подключается к двигателю
12GNDЗемля и теплоотвод
13GNDЗемля и теплоотвод
14Выход 4YВыход, подключается к двигателю
15Вход 4AВход для управления 4Y
16Vcc1Источник питания внутренней логики (максимум 7 В)

Особенности

  • Широкий диапазон напряжений питания: от 4,5 В до 36 В
  • Отдельный источник питания входной логики
  • Внутренняя защита от электростатики
  • Выключение при перегреве
  • Помехоустойчивые входы
  • Выходной ток: до 600 мА на канал
  • Пиковый выходной ток: до 1,2 А на канал

Подключение драйвера L298N к Ардуино Уно

Чтобы попробовать драйвер в деле, подключим его к контроллеру Ардуино Уно и к любому, попавшему под руку, небольшому мотору постоянного тока. В данном уроке мы используем самый простой мотор с напряжением питания 1,5-3 Вольта. Для питания этого мотора нам будет достаточно двух пальчиковых батареек. В такой схеме просто невозможно запитать микросхему драйвера от встроенного стабилизатора, поэтому питание +5В будем брать от Ардуино.

Также отметим, что при данной схеме подключения с внешним питанием +5 В, нам нужно убрать соответствующую перемычку, о которой мы говорили выше (перемычка питания от стабилизатора)!

Ну и раз уж мы планируем управлять скоростью вращения, уберем перемычку с контакта ENA.

Принципиальная схема

Внешний вид макета

Комплектация различных версий модуля.

Существует три основных версии модуля DRM-7710, отличия версий сведены в таблицу:

ОпцияDRM-7710-PDRM-7710-MDRM-7710-L
Светодиод индикатор питания+++
Предохранитель MultiFuse+++
Встроенный стабилизатор 78L05 [2]++
Токовый Шунт 0,01 Ом [2]+
Радиатор+
Тип силовых контактовштекерштекерклеммы
Рекомендуемый продолжительный ток нагрузки3 Адо 2 Адо 2 А
Ориентировочная цена в евро14108

Существует так же вариант модуля с окончанием -W, например DRM-7710-L-W. В этом случае разъём «CTRL» располагается под углом 90° к плате.

От заводской печатной платы с шелкографией и металлизацией было решено отказаться в пользу низкой цены готового модуля. Печатная плата защищена от коррозии слоем ксилольно-канифольного лака, в переходные отверстия запаяны отрезки медного провода.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector