Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Время работы роторного двигателя

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.

РПД в СССР

А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.

Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.

Первый советский серийный автомобиль с роторным двигателем — это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.

ВАЗ с роторным двигателем (ГАИ)

Конструкция

Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.

Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором. Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.

Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.

Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.

Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.

Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.

Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него. При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.

Конструкция роторного двигателя

Подвижный элемент этой конструкции устанавливается на валу и соединяется с шестерёнкой, которая соединена со статором и образует так называемую «неподвижную шестерню». Диаметр статора по размерам значительно меньше диаметра ротора, вращающегося вокруг шестерни вместе с зубчатым колесом.

Ротор имеет трёхгранную форму и движется по поверхности цилиндра. В процессе движения он поочерёдно закрывает объёмы камер при помощи уплотнений, находящихся в вершинах ротора. Во время работы конструкции не требуется специального газораспределения. 1 и 2 — части впускной системы двигателя; 3 — задняя часть корпуса двигателя; 4 и 6 — цилиндры (корпус ротора); 5 — средняя часть корпуса двигателя; 7 — передняя часть корпуса двигателя; 8 — корпус дроссельной заслонки; 9 и 11 — стационарные (неподвижные) шестерни на фланцах; 10 — ротор с внутренним зубчатым венцом в сборе; 12 — эксцентриковый вал роторов; 13 — приёмный выпускной коллектор. Благодаря действию давления газа и центробежных сил пластины, которые выполняют роль уплотнителя, прижимаются к внутренней поверхности устройства, и в результате происходит герметизация камеры.

Схема в итоге оказалась куда проще и компактнее, чем поршневые устройства, в том числе за счёт отсутствия картерного пространства, шатунов и коленвала. Чаще всего при изготовлении конструкции применяется соотношение радиуса шестерни к зубчатому колесу 2:3.

Читать еще:  Вибрация двигателя на холодную камри

Как он работает

Элементы системы двигателя

Нажать для увеличения

Роторный двигатель внутреннего сгорания по форме напоминает бочку. На нем и в нем вы не найдете многих компонентов, к которым привыкли в стандартном поршневом моторе. Во-первых, в нем нет поршней, ходящих вверх и вниз. Вместо них полезную работу совершает необычной формы треугольный поршень с округлыми краями (треугольник Рёло). Их количество может варьироваться от одного до трех в одном двигателе, но чаще всего используется схема с двумя поршнями, вращающимися вокруг вала посредством эксцентриковой полой центральной части.

Топливо и воздух нагнетаются в пространство между сторонами роторов и внутренними стенками короба, где смесь воспламеняется. Быстрое, взрывное расширение газов поворачивает ротор, который таким образом производит мощность. Роторы выполняют ту же задачу, что и поршни в поршневом двигателе, но с гораздо меньшим количеством движущихся частей, что делает роторный двигатель более легким и компактным, чем поршневой двигатель эквивалентного объема.

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

И наконец, двигатель выплевывает газы и остатки несгоревшего топлива наружу:

Мало кто знает, но роторный мотор был изначально придуман почти 100 лет назад, а не в 50-е годы XX века. Первоначально принцип работы мотора был проработан Феликсом Ванкелем, немецким инженером, который придумал свой принцип действия двигателя внутреннего сгорания.

Преимущество №1: Роторный двигатель легче и компактней обычного поршневого мотора

Война, поднявшая одних инженеров, например Фердинанда Порше, другим не дала никакой возможности развиться. Не нужны были в опасные времена мирные двигатели Ванкеля, поэтому изобретателю пришлось ждать аж до 1951 года, когда он получил приглашение от автопроизводителя NSU для разработки прототипа. Немецкая компания решила с помощью хитрости выяснить, так ли хорош оригинальный двигатель, параллельно дав возможность продемонстрировать силы другому инженеру – Ханнсу Дитеру Пашке.

Сложная конструкция Ванкеля фактически проиграла простому прототипу, разработанному инженером Ханнсом Дитером Пашке, который всего-навсего убрал из оригинальной конструкции все лишнее, сделав ее производство экономически выгодным.

Так в Германии был изобретен и опробован новый двигатель Mazda, который на протяжении долгих десятилетий был одним из немногих роторно-поршневых серийных моторов и единственным в 21-м веке.

Современный двигатель Ванкеля не совсем двигатель Ванкеля.

Да, основа роторного двигателя от Ванкеля стала самой успешной конструкцией данного двигателя в мире и единственной, которая смогла сложными путями дойти до серийного производства.

Еще в начале 60-х годов у NSU и Mazda проводился дружеский совместный конкурс на производство и продажу первого автомобиля с двигателем типа Ванкеля, когда они работали над сырым продуктом, пытаясь создать из него качественный товар.

NSU стал первым на рынке в 1964 году. Но немецкой компании не повезло: она разрушила свою репутацию в течение следующего десятилетия ненадлежащим качеством продукции. Частые отказы двигателя снова и снова посылали владельцев к дилеру и в магазин за запчастями. Вскоре нередко можно было обнаружить модели NSU Spider или Ro 80, в которых было поменяно три и более роторных двигателей Ванкеля.

Проблема заключалась в уплотнениях вершины ротора – тонких полосках металла между наконечниками вращающихся роторов и корпусами роторов. NSU сделал их из трех слоев, что вызывало неравномерный износ. Это была бомба замедленного действия не только для автомобилей фирмы, но и самого автопроизводителя. Мазда решила проблему уплотнения (крайне важного элемента мотора, без которого он просто не был способен работать из-за отсутствия давления), сделав их однослойными. Силовой агрегат начали устанавливать в 1967 году на спортивные люксовые модели Cosmo…

В начале 70-х годов Mazda представила целую линейку автомобилей с двигателем Ванкеля – мечта, которая была разбита нефтяным кризисом 1973 года. Пришлось поубавить аппетит и оставить мотор там, где в нем больше всего нуждались – в легком спортивном купе Mazda RX-7. С 1978 по 2002 год было выпущено более 800 тыс. этих легендарных спорткаров с необычным двигателем, у которого больше не было аналогов.

Из Германии в Японию, из Японии в СССР – вот путь двигателя, разработанного в 20-х годах XX века Ванкелем

Устройство и принцип работы роторного двигателя

Принцип работы и устройство роторного ДВС одновременно схож с работой обычного поршневого двигателя и электродвигателя. Так же, как поршневой ДВС роторный вариант имеет камеры сгорания, системы впрыска топлива, выхлопа и зажигания. Сходство конструкции с электродвигателем в том, что ротор получает энергию при вращении внутри корпуса. (Кроме роторного ДВС с возвратно-поступательным движением вала).

Электродвигатель получает кинетическую энергию за счет перемещения электромагнитного поля. Роторный ДВС – за счет воспламенения топливно-воздушной смеси и резкого роста давления в камерах сгорания, так же, как и поршневые ДВС.

На сегодня известны 5 типов роторных моторов:

  1. С возвратно-поступательным движением вала. В таких типах ДВС ротор и вал не делают полных оборотов вокруг оси.
  2. Классический двигатель Ванкеля с планетарным вращением вала.
  3. Двигатели, в которых камеры сгорания расположены по спирали.
  4. Двигатели с равномерным вращением вала с камерами сгорания, расположенными по спирали без уплотнительных элементов.
  5. Двигатели с пульсирующим вращением.
Читать еще:  Bmw 320 схема двигателя

Как и поршневые ДВС, роторные варианты имеют 4 рабочих такта:

  1. Впрыск топливно-воздушной смеси.
  2. Сжатие смеси.
  3. Воспламенение.
  4. Выпуск.

Рабочие циклы роторного двигателя

В обычных поршневых двигателях впрыск топлива и герметичность камеры сгорания обеспечиваются работой системы клапанов и поршневыми кольцами. В разных типах роторных ДВС последовательность тактов обеспечивается по-разному. В одних уменьшается объем камеры сгорания и обеспечивается сжатие смеси за счет перекрытия камеры вершиной ротора. В других – за счет уплотнений с механическим приводом. Но принцип работы един для всех типов.

  1. Воспламенение топливной смеси многократно повышает давление в камере сгорания.
  2. Давление дает кинетический импульс плоскости ротора и поворачивает его.
  3. Ротор передает крутящий момент через вал и зубчатую шестерню далее к механизмам авто. Плоскость ротора доходит до окна выхлопа, окно открывается и в него сбрасываются отработанные газы.
  4. Цикл повторяется.

Дизельные роторные (динамические) ИБП мощностью от 1 до 2 МВт

Дизельные роторные (динамические) ИБП (Diesel Rotary Uninterruptible Power Supply – DRUPS) — это совмещённые в одном конструктиве синхронный генератор, кинетический модуль/маховик и дизельный двигатель. Электрическое питание из городской сети, проходя через дроссель, питает синхронный генератор, выступающий в роли двигателя. В обычном режиме работы генератор выполняет функцию стабилизатора и фильтра напряжения: устраняет гармонические искажения и короткие перебои (до 50 мс), импульсы помех, нивелирует скачки и провалы напряжения городской электросети.

Области применения ДИБП

Динамические ИБП используются в дата-центрах, банках, больницах, аэропортах, а также для построения системы гарантированного энергоснабжения (СГЭ) заводов с конвейерными линиями, где нагрузка носит реактивный характер.

Величина нагрузки для большинства проектов, реализованных с использованием дизель-роторных ИБП находится в большинстве случаев в пределах от 1 МВА до нескольких десятков мегаватт, причем чаще всего используются агрегаты мощностью порядка 2,5 МВА. Практически повсеместно при этом используется параллельное соединение необходимого количества дизель-роторных ИБП с резервированием по схеме 2N или N+1.

Если мощность ЦОД составляет более 5 МВт, целесообразно использовать не классическую систему, состоящую из дизеля, АВР, статического ИБП и системы кондиционирования, а дизель-роторный ИБП – такое решение содержит меньше компонентов и не требует прецизионного кондиционирования – достаточно приточно-вытяжного охлаждения.

Одна из обязательных статей эксплуатационных расходов в ЦОДе – источники бесперебойного питания (ИБП). Статические (классические) ИБП состоят из двух компонент – самих источников и батарей – и работают с дизель-генераторными установками (ДГУ). Но они имеют недостаток — ограниченный срок службы батарей (5 лет).

Двигатели и системы запуска

Используемые для динамических ИБП дизельные установки отличаются от дизельных двигателей, применяемых в дизель-генераторах. Производители дизель-роторных ИБП выпускают самостоятельно, как правило, только роторные накопители энергии и выполняют окончательную сборку и проверку устройства. Используют дизельные установки MTU и Mitsubishi. В двигателях, выпускаемых Mitsubishi по заказу Hitec Power Protection, используются двойной стартер, предварительный подогрев и самотечная система подачи топлива, специальная муфта сцепления свободного хода.

Организуем бесплатный выезд инженера для оценки стоимости работ и для составления сметы на ДИБП или ДГУ.

Отправьте запрос на order@tech-expo.ru

Принцип работы

На одном валу с синхронной машиной вращается кинетический модуль – аккумулятор кинетической энергии, состоящий из двух роторов: внутреннего и внешнего. Внутренний ротор вращается с той же частотой, что и синхронный генератор – 1500 об/мин, внешний – около 3000 об/мин (относительно внутреннего – те же 1500 оборотов). При этом обмотка постоянного тока внутреннего и короткозамкнутая обмотка внешнего ротора вступают в электромагнитное взаимодействие. Кинетический модуль в процессе нормальной работы системы накапливает кинетическую энергию. В случае кратковременного (в течение 5 с) пропадания внешнего электропитания или выхода его параметров за границы нормы синхронный генератор продолжает вращаться и питать нагрузку за счет передачи ему энергии модулем. Магнитное поле внутреннего ротора кинетического модуля замедляет скорость вращения внешнего ротора и благодаря электронному блоку управления автоматически поддерживает частоту синхронного генератора на уровне необходимых 1500 об/мин.

Если пропадание электропитания происходит на более длительное время, или напряжение питания изменяется больше, чем на 10%, включается дизельный двигатель. Входной выключатель при этом размыкается, и синхронный генератор из электрической машины трансформируется в генератор тока. В течение этой пятисекундной паузы срабатывает электромагнитное сцепление, обеспечивающее соединение дизельного двигателя и генератора (продолжительность процесса – в среднем не более 1 сек). Дизель вращается на оптимальных для системы оборотах – 1500 и передает энергию вращения синхронному генератору. Выходное напряжение снимается с обмоток генератора и идет через ответственную нагрузку. Кинетический модуль в это время накапливает энергию, возвращаясь к 3000 об/мин. Когда электропитание от сети возобновляется, синхронный генератор переходит на режим синхронного двигателя.

Производители предусмотрели в своих DRUPS дополнительный механизм старта дизельного двигателя: если двигатель не вступает в работу, происходит электромагнитное сцепление (через 3–4 с) и, как следствие, прокручивание стартера. Двигатель в этом случае гарантированно «заводится с толкача», что увеличивает надежность пуска.

Ремонт и техническое обслуживание

Вращающиеся части кинетического накопителя энергии и синхронного мотор-генератора требуют смазки подшипников. В современных решениях эта работа выполняется без остановки системы, однако через некоторое время изношенные детали все равно придется менять. И тогда без вывода из эксплуатации дизель-роторного ИБП уже не обойтись. Кроме того, раз в год необходимо произвести осмотр и обслуживание дизельной установки.

Читать еще:  Kia optima тюнинг двигателя

Постоянного внимания требуют стартовые аккумуляторы, отвечающие за запуск дизельной установки, которым приходится работать в тяжелых температурных условиях.

Каждые 10 лет производится полная замена аккумулирующего ротора кинетического накопителя. За этот срок 2 раза меняются подшипники. Это требует проведения трудоемких и затратных работ, сравнимых с капитальным ремонтом двигателя — комплекс работ по балансировке, измерению, настройке и запуску системы в эксплуатацию.

Опыт работы ООО «Техэкспо» по ремонту и техобслуживанию ДИБП

Строительно-монтажные и инженерные работы на энергетическом оборудовании 1,2 МВт для дата-центра в Петербурге

Сентябрь 2020 года

В сентябре 2020 года специалисты компании «Техэкспо» выполнили строительно-монтажные и инженерные работы на энергетическом оборудовании ДИБП-3 крупного дата-центра в Санкт-Петербурге, который оказывает услуги в сфере DC-аутсорсинга. Летом 2019 года мы оказывали услуги монтажа на энерг.

Техническое обслуживание дизельного двигателя и инженерные работы на энергетическом оборудовании дата-центра Санкт-Петербурга

Октябрь 2019 года

В сентябре 2019 года, в рамках капитального ремонта энергетического оборудования, специалисты Техэкспо выполнили расширенное годовое техническое обслуживание дизельного двигателя динамического источника бесперебойного питания (ДИБП) крупного дата-центра в Санкт-Петербурге. Кроме.

Преимущества и недостатки

Для обеспечения работы ДИБП не требуются системы кондиционирования, быстро заряжаются (для раскрутки маховика требуется несколько минут), поэтому могут выдерживать многократные отключения электроэнергии в течение небольшого промежутка времени.

При многократных отключениях внешнего электропитания дизель-роторные ИБП — безальтернативное решение. Зачастую мощность традиционных, статических ИБП рассчитывается таким образом, чтобы ее хватило для поддержания работы оборудования в течение 10-15 мин. Но если на протяжении короткого отрезка времени (менее часа) напряжение в сети пропадет несколько раз подряд хотя бы на 4-5 мин, то аккумуляторы могут просто не успеть зарядиться. Динамическим ИБП в силу их конструктивных особенностей такая угроза не страшна.

Достоинства дизель-роторных систем начинают проявляться на мощностях, приближающихся к 1 МВА. Причем речь идет не только и не столько о питании ИТ-оборудования. Скорее, наоборот, динамические системы могут эффективно применяться в промышленности, особенно если нагрузка носит реактивный характер или если возможны короткие замыкания в системе (дизель-роторные ИБП выдерживают 10-кратное превышение тока короткого замыкания).

Видео: принцип работы ДИБП

Сравнивая классические СГЭ, в состав которых входят статические ИБП на мощность 1 МВА и дизель-генератор на 1,6 МВА, с динамическими решениями на 1 МВА, эксперты отмечают, что, начиная с пятого года эксплуатации, суммарная стоимость владения для динамического ИБП становится меньше, а к десятому году такой ИБП оказывается в 1,5 раза выгоднее.

Например, для ЦОД мощностью в 1 МВА потребуется обеспечить резервирование за счет использования двух дизель-роторных ИБП по 1 МВА каждый (схема 1+1). Когда энергопотребление дата-центра начнет расти, нужно будет установить дополнительный ИБП мощностью 1 МВА, чтобы сохранить резервируемость (схема 2+1). В случае со статическими ИБП ситуация иная: на рынке они представлены в широком диапазоне мощностей, поэтому этот параметр можно наращивать постепенно. Эффективность дизель-роторных ИБП начинает появляться в расчетах ТСО на семь лет при мощности, превышающей 1 МВт на серверную нагрузку.

При отсутствии капитальных затрат на аккумуляторные батареи в случае использования динамических ИБП потребитель должен быть готов к расходам на ремонт дизельных двигателей, топливо, расходные материалы.

По сравнению с классическими ИБП, которые предусматривают резервирование с помощью ДГУ, дизель-роторные требует гораздо более частых запусков дизеля, поскольку время поддержки нагрузки кинетическими накопителями энергии значительно меньше, чем АКБ.

Частое количество запусков требует больше дизельного топлива, для которого необходимы дополнительные емкости для хранения. Такие хранилища нуждаются в повышенных мерах безопасности, таких, как возможность резервного сброса дизельного топлива в случае аварии.

Время восстановления системы в случае отказа: любая авария в статических ИБП может быть устранена за 8 ч, а минимальный срок для полного восстановления дизель-роторного ИБП составляет 24 ч.

При этом вероятность возникновения неожиданных аварий при использовании дизель-роторных ИБП значительно выше в сравнении с использованием аккумуляторных батарей. Это объясняется тем, что химические элементы в составе батарей и происходящие химические процессы в значительной степени поддаются контролю (например, с помощью специальных систем мониторинга). Кроме того, АКБ меняют планово в процессе их эксплуатации. Это позволяет заблаговременно осуществлять превентивные действия для предупреждения неисправностей. В случае с дизель-роторным ИБП возможно скачкообразное возникновение аварии, поскольку поведение механической системы практически невозможно спрогнозировать.

Поскольку динамический ИБП – кинетическая конструкция с наличием большого количества подвижных частей, она требует ровного фундамента и тщательных выравниваний горизонтов при установке. Зачастую оптимально отвести под дизель-роторный ИБП отдельное здание, в котором должны быть кран-балки для проведения сборочно-разборочных работ и эксплуатационного обслуживания ИБП.

В отличие от статических ИБП, дизель-роторные оптимально использовать для электропитания кондиционеров. Компрессоры кондиционеров характеризуются очень высокими стартовыми токами, которые статические источники бесперебойного питания не всегда могут обеспечить.

Производители

Динамические ИБП выпускаются в диапазоне мощностей от 100 до 3000 кВА:

Hitec Power Protection: 500 — 3000 кВА.

Euro-Diesel: No-Break KS5 200 — 1750 кВА, No-Break KS5-SB 200 — 2000 кВА.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector