Pikap24.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выверка двигателя что это такое

FIXTURLASER

Система для центровки валов и контроля плоскостности лазерная

  • Центровка и выверка геометрии одной системы
  • Беспроводная технология
  • Выверка прямолинейности и плоскости с точностью до 1 мкм
  • Простота использования, интуитивно понятный интерфейс

Fixturlaser NXA Ultimate

Система для центровки валов и контроля плоскостности лазерная

Система для центровки валов лазерная

  • Самые большие окна приемников CCD второго поколения
  • Встроенный гироскоп в измерительные блоки
  • Автоматическое определение положения машины относительно оператора
  • Автоматический расчет количества пластин под лапы электродвигателя

Fixturlaser NXA Pro

Система для центровки валов лазерная

Комплект для выверки геометрии оборудования (плоскостность, прямолинейность, перпендикулярность)

  • Удобство использования и эксплуатационная гибкость
  • Интуитивно-понятный графический пользовательский интерфейс
  • Микронное разрешение
  • Онлайн отображение текущих значений
  • Документирование результатов измерений
  • Возможность комментариев к каждой точке измерений

Fixturlaser NXA Geo

Комплект для выверки геометрии оборудования (плоскостность, прямолинейность, перпендикулярность)

Взрывозащищенная система для центровки валов

  • Беcпроводная взрывозащищенная система
  • Планшетный компьютер промышленного использования
  • Функция горизонтальной и вертикальной центровки
  • Взрывозащищенная система с набором систем продвинутых систем для центровки общепромышленного исполнения

Fixturlaser Exo

Взрывозащищенная система для центровки валов

Беспроводная система центровки и вибродиагностики

  • Интеллектуальная система центровки и вибродиагностики
  • Беспроводной з-х осевой датчик вибрации
  • Возможность работы планшетом пользователя
  • Программа диагностики оборудования Machine Defender

RT-300

Беспроводная система центровки и вибродиагностики

Комплект беспроводных блоков для центровки

  • Возможность подключить любой смартфон или планшет
  • Беспроводная связь
  • Время работы измерительных блоков до 17 часов
  • Программы горизонтальной и вертикальной центровки

AT-200

Комплект беспроводных блоков для центровки

Система лазерной центровки валов

  • Простота управления
  • Расстояние между измерительными блоками 10 м
  • CCD приемники II поколения с матрицей 30 мм и линейным лазером
  • Самые компактные измерительные блоки

Fixturlaser EVO

Система для центровки валов лазерная

Система центровки валов лазерная

  • Лазерная центровка и анализ вибрации в одном приборе
  • Планшет промышленного исполнения IP65
  • Автоматическое определение дефектов оборудования
  • Беспроводной датчик перемещения для определения дефекта мягкой лапы, натяжения трубной обвязки и деформации корпуса

Fixturlaser ECO

Система для центровки валов лазерная

Система для центровки валов лазерная на базе планшетного компьютера

  • Бюджетный комплект доступный для каждого
  • Планшет в комплекте
  • Двухлучевая технология
  • Предподготовленные крепления. Установка на валы занимает меньше минуты

Fixturlaser Laser Kit

Система для центровки валов лазерная на базе планшетного компьютера

Система для центровки валов и контроля плоскостности лазерная

  • Центровка и выверка геометрии одной системы
  • Беспроводная технология
  • Выверка прямолинейности и плоскости с точностью до 1 мкм
  • Простота использования, интуитивно понятный интерфейс

Fixturlaser PAT

Система для центровки валов лазерная

Шведская компания ACOEM Fixturlaser является одним из ведущих разработчиков и производителей лазерных систем центровки валов. Впервые в мире ACOEM Fixturlaser внедрила сенсорный экран в панель управления, а также является пионером в использовании видимых лазеров и двух измерительных блоков.

Компания BALTECH является эксклюзивным представителем ACOEM Fixturlaser в России и у нас вы можете купить по ценам производителя аксессуары, лазерные центровщики и системы выверки геометрии Fixturlaser:

FIXTURLASER NXA − лазерный прибор для центровки валов 2-го поколения с самыми малыми в отрасли размерами лазерных головок.

FIXTURLASER NXA Ultimate – универсальный прибор для центровки валов и выверки геометрии.

FIXTURLASER NXA WE − прибор для центровки валов FL NXA с набором крепежных приспособлений для ветрогенераторов.

FIXTURLASER NXA GEO – лазерная система выверки турбин и компрессоров.

FIXTURLASER EVO − лазерный прибор для центровки валов с самыми тонкими (33 мм) в мире излучателями-приемниками излучения.

FIXTURLASER ECO – беспроводная лазерная система центровки валов.

FIXTURLASER Laser Kit – комплект лазерных измерительных блоков с цепным крепежом и программным приложением.

FIXTURLASER EXO – интеллектуальная лазерная система центровки взрывозащищенного исполнения.

FIXTURLASER PAT− система лазерной центровки шкивов.

RT-300− настраиваемая экосистема для экспресс-диагностики, проведения прецизионной центровки валов, а также сохранения отчетов и истории операций.

Преимущества лазерных центровщиков валов ACOEM Fixturlaser

современный эргономичный дизайн и удобство использования;

графический пользовательский интерфейс с анимацией;

отображение текущих значений и результатов корректировок в режиме реального времени;

Предыстория

До внедрения управляемой технологии чистового фрезерования от 30% до 60% трудоемкости этой операции составлял контроль детали вне станка системой бесконтактного сканирования после получистовой и чистовой обработки для определения объема недоработанного материала, а также связанные с ним процессы повторной установки и выверки заготовки.

Анализ статистики отклонений размеров лопаток рабочих колес после лезвийной обработки показал наличие значительных погрешностей. Отклонения обработанной лопатки в поперечном сечении наблюдались следующие: колебание остаточного припуска ±0,064 мм, смещение от номинального профиля 0,082 мм. Отклонения в продольном сечении имели близкие значения: колебание остаточного припуска ±0,082 мм, смещение от номинального профиля 0,111 мм.

Основными причинами возникающих в ходе лезвийной обработки отклонений являются кинематическая погрешность станка при пятикоординатной обработке; упругие деформации заготовки лопатки в процессе резания, обусловленные ее малой жесткостью; упругие деформации инструмента в процессе обработки.

“Лезвийная обработка отклонений предполагала постоянное присутствие у станка технолога-программиста для корректировки управляющих программ и повторной привязки детали. Большой объем необходимых для доработки действий многократно увеличивал риск возникновения неисправимого брака, связанного с человеческим фактором. Возникла очевидная необходимость разработки принципиально нового решения для высокоточного и быстрого фрезерования рабочих колес”, — рассказал ведущий специалист предприятия – серийного производителя рабочих колес.

Представители серийного производства сформулировали в техническом задании по разработке управляемой технологии чистового фрезерования рабочих колес следующие требования:

  • получистовая обработка по параметризованной управляющей программе
  • контроль величины оставшегося припуска на станке без переустановки
  • корректировка параметризованной управляющей программы по результатам измерения
  • чистовая обработка по скорректированной параметризованной управляющей программе.

Энергосбережение за счет наладки производственного оборудования на основе энергосервиса

С. В. Антонычев, генеральный директор ООО «Энергопромсервис»

В России механизм энергосервисного контракта (ЭСК) пока только отрабатывается, поэтому интересен любой опыт их внедрения. Приведем один из примеров наладки производственного оборудования, принадлежащего предприятию коммунального хозяйства в г. Дубна, выполненной на условиях ЭСК.

В ходе обязательного энергетического обследования производственных объектов многоотраслевого предприятия коммунального хозяйства наукограда Дубна ОАО «ПТО ГХ» 1 была проведена выборочная вибродиагностика 32 агрегатов: 26 насосов, 3 дымососов и 3 вентиляторов, которая выявила 12 агрегатов, остро нуждающихся в центровке. Нами был апробирован и предложен механизм виброналадки оборудования на условиях энергосервисного контракта.

Обследование оборудования

Виброобследование насосных и тягодутьевых машин ОАО «ПТО ГХ» вызвано необходимостью оценки их фактического состояния, проводилось на предприятии впервые для принятия решения о замене дефектных элементов и экономии электроэнергии за счет процедуры лазерной центровки валов: согласования движения двух или более валов друг с другом, которое необходимо выполнять перед их размещением внутри механизма до начала работы оборудования.

Необходимость выверки соосности валов

В настоящее время важность выверки соосности признается всеми специалистами, но на многих предприятиях нет должного отношения к качеству работ по центровке, особенно основного насосного и тягодутьевого оборудования. Однако согласно государственным законодательным документам по энергосбережению 2 , подход к решению данных вопросов должен стать иным.

Плохая центровка валов является частой причиной повышенной вибрации агрегатов и сопровождается повышенным расходом потребляемой энергии и частыми повреждениями подшипников и соединительных муфт. Использование эластичных муфт при плохой центровке валов снижает вероятность повреждения самих муфт, но не избавляет подшипники от основной причины их преждевременного выхода из строя – от перегрузки вследствие несоосности валов агрегата. Следствием являются повышенные эксплуатационные расходы и снижение производительности оборудования, а в итоге происходит общее снижение прибыльности предприятия.

Если обратиться к статистике, то становится ясно, что причиной преждевременного износа оборудования в 50?% случаев будет именно несоосность. Для сравнения: дисбаланс будет причиной в 40 % случаев.

Анализ вибрации оборудования

Сегодня в большинстве отраслей промышленности используют вибрационный анализ в качестве метода программы предупредительного обслуживания. Анализ вибрации оборудования дает возможность просто обнаружить проблемы, связанные с несоосностью.

Программа виброобследования насосных и тягодутьевых машин ОАО «ПТО ГХ» была разработана на основе шестилетнего практического опыта, полученного на ОАО «Чепецкий механический завод». В базе данных программы есть информация по нормам, предназначенным для оценки состояния вращающихся агрегатов практически всех типов. Программа учитыва-ет состояние агрегата, тип фундамента и соединительной муфты. Технологические параметры, характеризующие работу оборудования (производительность, температура, давление и т. д.), также могут вводиться в программу для проведения анализа их влияния на уровень вибрации агрегата.

Читать еще:  Что такое двигатель flexifuel

Для обработки данных использовалось программное обеспечение «Аврора 2000» 3 – это сочетание базы данных по оборудованию с экспертной диагностической системой.

Оценка текущего состояния агрегата производится на основании сравнения замеренных значений вибрации с нормированными значениями (ГОСТ ИСО 10816/1–1997 «Вибрация. Контроль состояния машин по результатам измерения вибрации на невращающихся частях. Общие требования»).

Оценка текущего состояния оборудования

Основой для определения текущего состояния оборудования являются измерения среднеквадратичного значения (СКЗ) виброскорости (мм/с), они проводятся на каждом подшипнике оборудования с горизонтальной осью вращения с последовательной фиксацией оси вибродатчика и измерением вибрации в трех взаимно перпендикулярных направлениях: вертикальном, поперечном и осевом (рис. 1), при этом существуют эмпирические правила анализа вибрации:

Точки измерения вибрации на подшипниковых опорах насосного агрегата

Состояние подшипников, качество центровки механизмов, наличие небалансов роторов, правильность монтажа ременных передач и т. д. определяются программой «Аврора 2000».

На основании нескольких замеров вибрации программа определяет время, когда состояние оборудования ухудшается до критического. По итогам проведенных замеров вибрации всего контролируемого оборудования программа оперативно и автоматически формирует график проведения ремонтных работ с указанием дефектов, которые необходимо устранить.

Ярким примером пагубного воздействия чрезмерной нагрузки на подшипники качения, установленные на сетевом насосе марки ЦН 400/105 (№ 3) всего лишь месяц назад, является выход из строя одного из них (рис. 2) по причине ненадлежащего выполнения процедуры центровки.

Сетевой насос марки ЦН 400/105 (№ 3)

Раскалывание внешнего кольца подшипника качения данного сетевого насоса могло быть вызвано только двумя причинами: перекосом при монтаже или при больших динамических нагрузках в результате некачественной центровки валов на стадии монтажа агрегата. Учитывая, что относительно недавно перед этим был заменен подшипник качения задней части электродвигателя (рис. 3, точка 1), то можно с большой вероятностью говорить о работе агрегата без должной центровки, которая и спровоцировала ускоренное разрушение подшипников.

Упрощенная кинематическая схема расположения подшипниковых узлов сетевого насоса марки ЦН 400/105 (№ 3)

В результате несоосности валов механические и электрические части двигателя испытывают повышенную нагрузку: изнашиваются подшипники (это может стать причиной биения), увеличиваются токи (что приводит к увеличению электрических потерь, более быстрому старению изоляции обмоток), КПД машины резко падает. Работа двигателя в тяжелых режимах ведет к резкому снижению срока эксплуатации, а следовательно, к более частым ремонтам и увеличению затрат на обслуживание данного оборудования.

Виброналадка агрегата

После замены подшипника проведена виброналадка агрегата, которая заключается в выполнении процедуры центровки валов насоса в двух плоскостях (рис. 4). Использование лазерной техники может значительно сократить время центровки, т. к. лазеры обладают высокой точностью и простотой применения. Для этих целей была задействована шведская система центровки валов Easy-Laser D505 4 , после чего проведены измерения СКЗ виброскорости и оценки огибающей виброускорения измерительным комплексом SKF «CMAS 100 SL».

Центровка валов насоса в двух плоскостях

Энергосервисный контракт

Предприятие ОАО «ПТО ГХ» (далее – заказчик), работающее в системе тарифного регулирования, из-за ограниченности финансирования не имеет возможности проводить не запланированные в тарифе работы. Поэтому наша организация (далее – исполнитель) приняла решение провести высокоточную лазерную центровку агрегатов на регулярной основе, на условиях энергосервисного контракта, по которому заказчик, не расходуя собственных средств, проводит улучшение своего энергохозяйства и получает отцентрованные агрегаты.

Исполнитель за свой счет провел процедуру виброналадки оборудования, и под контролем представителя заказчика ежемесячно производит расчет экономии электроэнергии. При этом заказчик в результате эксплуатации оборудования оплачивает услуги (работы) исполнителя за счет средств, полученных от экономии электроэнергии.

По окончании срока энергосервисного контракта заказчик получает все произведенные улучшения оборудования и, естественно, продолжает получать дальше все сэкономленные средства.

Полученная экономия

Приведем пример расчета экономии электроэнергии, достигаемой в результате лазерной центровки сетевого насоса марки ЦН 400/105 (№ 3), установленного в одной из котельных ОАО «ПТО ГХ». Общий алгоритм расчета экономии:

1. Измерить ток до и после проведения центровки.
2. Определить разницу измеренных значений тока.
3. Уточнить характеристики двигателя: напряжение, коэффициент мощности.
4. Выяснить стоимость энергии для предприятия.
5. Рассчитать мощность в кВт по формуле:

где V – напряжение сети, В;
А – сила тока, А;
cos (φ) – коэффициент мощности.
Годовая экономия составит

где Т – время работы насоса с учетом фактической загрузки насоса, ч/год;
Δ W – разность мощностей до и после проведения центровки, кВт;
Ц – стоимость покупаемой электроэнергии, руб./кВт ч.

В нашем случае исходные данные для расчета ЭСК следующие:
— мощность электродвигателя сетевого насоса А3 315 М-4У3 Л13 –190 кВт;
— напряжение сети – 380 В;
— время работы насоса с учетом фактической загрузки (при коэффициенте спроса, равном 0,6) – 3 124,8 ч/год;
— тариф покупаемой электроэнергии – 3,2459 руб./кВт•ч;
— cos (φ) – 0,90;
— потребляемый ток, измеренный до центровки,?– 54 А, после центровки – 49 А; соответственно, разница – 5 А.

Рассчитаем мощность до и после проведения центровки:

До: (380 • 54 • 0,9 • 1,732)/1 000 = 31,99 кВт
После: (380 • 49 • 0,9 • 1,732)/1 000 = 29,02 кВт
Экономия в год будет равна: 3124,8(31,99 – 29,02)3,2459 = 30,12 тыс. руб.

С учетом того, что стоимость полной диагностики сетевого насоса марки ЦН 400/105 (№ 3), включая лазерную центровку, равна 15 тыс. руб., срок окупаемости данного мероприятия составит 6 мес.

По экспертным оценкам, годовой совокупный потенциал экономии электрической энергии в результате процедуры лазерной центровки насосного и тягодутьевого оборудования ОАО «ПТО ГХ» может составить от 450 до 900 тыс. кВт•ч (4–9 % от общего потребления), что в денежном выражении при тарифе на электроэнергию 3,2459 руб./кВт•ч составит от 1,5 до 3,0 млн руб.

Итак, правильная центровка механизмов может снизить потребление энергии электродвигателем в среднем до 10 %, а в некоторых случаях и намного больше.

Никого не удивляют напоминания о выключении света в помещении, если в нем нет необходимости, но кто-нибудь интересовался, сколько электроэнергии можно сэкономить в результате грамотного подхода к виброналадке насоса? А ведь на предприятии средних размеров их может быть несколько сотен. Плохая центровка приводит к потере по крайней мере 3 % стоимости всей производственной энергии.

1 На производственных объектах ОАО «ПТО ГХ» установлено 82 единицы насосного оборудования мощностью от 1,1 до 200,0 кВт, при этом велика доля энергоемких сетевых и канализационных насосов с приводами большой мощности (более 75 кВт) – 39 %. Кроме насосного оборудования, в котельной № 1 установлено 10 тягодутьевых механизмов (5 дымососов и 5 дутьевых вентиляторов).

2 Федеральный закон от 23 ноября 2009 года № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» и Распоряжение Правительства РФ от 13 ноября 2009 года № 1715-р «Энергетическая стратегия России на период до 2030 года».

3 «Аврора-2000» – экспертная система диагностики состояния и планирования ремонтов вращающегося оборудования по техническому состоянию (Пермь).

4 Сертификат Госстандарта РФ. Система центровки и измерения взаимного расположения поверхностей и вибрации Easy-Laser зарегистрирована в Государственном реестре средств измерений № 31164-06.

Как подобрать систему лазерной выверки?

Чтобы покупка лазерной системы была экономически оправдана, следует перед заказом уточнить эксплуатационные спецификации совместимого оборудования. Рекомендуется составить список требований к системе. Покупка дорогостоящих приборов, отвечающих действующим требованиям, может оказаться экономически не целесообразной, поскольку эксплуатация потребует обслуживания квалифицированными специалистами.

Основной проблемой является выверка в горизонтальной плоскости электродвигателя с насосом, или вентиляторы, сопряжённые муфтой. Оптимальное решение задачи: заказ системы, простой в эксплуатации и монтаже.

Читать еще:  Что является двигателем рекламы

Применение прибора для выверки УВВ-03

Прибор УВВ-03 применяется в процессе выполнения работ по пуско-наладке и ремонту приводов с редукторами, роторными и поршневыми механизмами, валы которых передают крутящий момент посредством муфт для центровки механизмов. Данный прибор может также провести центровки с учетом известной тепловой расцентровки как в вертикальной, так и в горизонтальной плоскости. Также в прибор были программы, которые позволяют выполнять центровку валов с промежуточным валом.

ВАЖНО. По желанию Заказчика есть возможность ввести в прибор программы, которые позволят выполнить другие виды центровок (валопроводов, вертикальных механизмов и т.п.).

Монтаж электродвигателя

РубрикаПроизводство и технологии
Видреферат
Языкрусский
Дата добавления07.06.2010
Размер файла372,8 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Монтаж электродвигателя

Электродвигатель, доставленный к месту установки с завода-изготовителя или со склада, где он хранился до монтажа, или из мастерской после ревизии, устанавливается на подготовленное основание.

В качестве оснований для электродвигателей применяют в зависимости от условий: литые чугунные или стальные плиты, сварные металлические рамы, кронштейны, салазки и т. д. Плиты, рамы или салазки выверяются по осям и в горизонтальной плоскости и закрепляются на бетонных фундаментах, перекрытиях и т. п. при помощи фундаментных болтов, которые заделываются в заготовленные отверстия. Эти отверстия обычно оставляют при бетонировании фундаментов, закладывая заблаговременно в соответствующих местах деревянные пробки.

Отверстия небольшой глубины могут быть также пробиты в готовых бетонных основаниях при помощи электро- и пневмомолотков, оснащенных высокопроизводительными инструментами с наконечниками из твердых сплавов. Отверстия в плите или раме для закрепления электродвигателя обычно выполняются на заводе-изготовителе, который поставляет общую плиту или раму для электродвигателя и приводимого им механизма.

В случае, если отверстия для электродвигателя отсутствуют, на месте монтажа производится разметка основания и сверление отверстий. Для выполнения этих работ определяются монтажно-установочные размеры устанавливаемого электродвигателя (смотрите рисунок), а именно: расстояние между вертикальной осью двигателя и торцом вала L6+L7 или торцом насаженной полумуфты, расстояние между торцами полумуфт на валах электродвигателя и приводимого им механизма, расстояние между отверстиями в лапах вдоль оси электродвигателя С2+С2, расстояние между отверстиями в лапах в перпендикулярном направлении С+С.

Кроме того, должна быть замерена высота вала (высота оси) на механизме и высота оси электродвигателя h. В результате этих последних двух замеров предварительно определяется толщина подкладок под лапы.

Рис. Обозначения установочных размеров двигателя

Для удобства центровки электродвигателя толщина подкладок должна предусматриваться в пределах 2 — 5 мм. Подъем электродвигателей на фундаменты выполняется кранами, талями, лебедками и другими механизмами. Подъем электродвигателей весом до 80 кг при отсутствии механизмов может выполняться вручную с применением настилов и других устройств. Установленный на основание электродвигатель центрируется предварительно с грубой подгонкой по осям и в горизонтальной плоскости. Окончательная выверка производится при сопряжении валов.

Центровка электродвигателей

Электродвигатель, установленный на опорную конструкцию, центрируется относительно вала вращаемого им механизма. Способы центровки бывают различные в зависимости от типа передачи. От точности выверки зависит надежность работы электродвигателя и главным образом его подшипников.

Ременная передача

При ременной и клиноременной передачах необходимым условием правильной работы электродвигателя с приводимым им во вращение механизмом является соблюдение параллельности их валов, а также совпадение средних линий (по ширине) шкивов, так как иначе ремень будет соскакивать. Выверка производится при расстояниях между центрами валов до 1,5 м и при одинаковой ширине шкивов с помощью стальной выверочной линейки.

Линейка прикладывается к торцам шкивов и производится подгонка электродвигателя или механизма с таким расчетом, чтобы линейка касалась двух шкивов в четырех точках.

При расстоянии между осями валов более 1,5 м, а также в случае отсутствия выверочной линейки соответствующей длины выверка электродвигателя с механизмом производится с помощью струны и временно устанавливаемых на шкивы скоб. Подгонка производится до получения одинакового расстояния от скоб до струны. Выверка валов может производиться и с помощью тонкого шнурка, натягиваемого от одного шкива к другому.

Выверку электродвигателя и машины со шкивами разной ширины производят, исходя из условия одинакового расстояния от средних линий обоих шкивов до струны, шнурка или выверочной линейки.

Выверенный электродвигатель должен быть надежно закреплен болтами с последующей проверкой точности выверки, которая при закреплении электродвигателя может быть случайно нарушена.

Выверка валов при ременной и клиноременной передачах. а — с помощью выверочной линейки; б — с помощью скоб и струны; в — с помощью шнурка; г — с помощью линейки при шкивах разной ширины.

Непосредственное соединение муфтами

Центровка двигателя с механизмом необходима для достижения такого взаимного положения валов двигателя и механизма, при котором величины зазоров между полумуфтами будут равны. Это достигается путем передвижения двигателя на небольшие расстояния в горизонтальной и вертикальной плоскостях.

Перед центровкой производится проверка прочности посадки полумуфт на валы путем обстукивания полумуфты при одновременном ощупывании рукой стыка полумуфты с валом.

Центровка производится в два приема: сначала предварительная — с помощью линейки или стального угольника, а затем окончательная — по центровочным скобам.

Предварительная центровка ведется путем проверки отсутствия просвета между ребром приложенной линейки (стального угольника) и образующими обеих полумуфт. Такая проверка выполняется в четырех местах: вверху, внизу, справа и слева.

Во всех случаях при центровке обращается внимание на то, чтобы количество отдельных прокладок под лапами электродвигателей было как можно меньше; тонких прокладок толщиной 0,5 — 0,8 мм применяют не более 3 — 4 шт.

Если по условиям центровки их оказывается больше, то их заменяют общей прокладкой большей толщины. Большое количество прокладок, и тем более из тонких листов, не обеспечивает надежного закрепления электродвигателя и может вызвать нарушение центровки; оно также представляет неудобство при последующих ремонтах и центровках во время эксплуатации.

Подобные документы

Разработка клиноременной передачи от электродвигателя к редуктору привода ленточного транспортера. Нагрузки на валы и подшипники ременной передачи. Проектный расчет долговечности и конструкция шкивов передачи. Допускаемое удельное окружное усилие.

курсовая работа [2,4 M], добавлен 15.12.2013

Монтаж металлоконструкций. Принципы организации монтажных работ. Подготовительные работы. Подготовка и приемку фундаментов. Подъем, установка и выверка технологических металлоконструкций. Укрупнительная сборка и устойчивость монтируемых конструкций.

реферат [151,3 K], добавлен 15.09.2008

Критерии для выбора типа электродвигателя. Расчёт клиноременной передачи, призматических шпонок, валов, подшипника, зубчатой передачи. Выбор муфты и особенности смазки редуктора. Кинематический и силовой расчет привода согласно мощности электродвигателя.

контрольная работа [1,9 M], добавлен 01.12.2010

Выбор электродвигателя и кинематический расчеты клиноременной передачи, зубчатых колес редуктора, валов, подшипников. Конструктивные размеры шкива клиноременной передачи, шестерни, колеса, корпуса. Проверка шпоночных соединений, сборка редуктора.

курсовая работа [147,6 K], добавлен 26.11.2010

Общая характеристика асинхронных взрывозащищенных двигателей типа ВАОВ. Область применения, комплектация. Подвод и присоединение к электродвигателям кабелей, проложенных открыто и в трубах. Монтаж электродвигателей, продуваемых под избыточным давлением.

презентация [552,0 K], добавлен 13.12.2013

Ремонт и техническое обслуживание деревоообрабатывающего станка ЦДК5-2: подготовка к капитальному ремонту узла, организация работ. Испытание станка после монтажа, установка и выверка, сдача в эксплуатацию. Техника безопасности при ремонте и монтаже.

курсовая работа [1,3 M], добавлен 16.04.2012

Методы монтажа зданий и сооружений: мелкоэлементный, поэлементный, блочный, строительно-технологический. Виды монтажных машин: стационарные и передвижные. Использование монтажных приспособлений для упрощения работ по выверке и для закрепления конструкций.

презентация [810,2 K], добавлен 20.04.2014

Выверка вращающихся печей

Специалисты ООО «Промышленная геодезия» разрабатывают и внедряют новые технологии выверки вращающихся печей, которые гарантируют требуемую точность и высокую эффективность для конкретных условий объекта Заказчика. Предлагаемые решения базируются на последних разработках в областях прикладной геодезии, информационных и компьютерных технологий. Современный приборный ряд позволяют обмерять такие крупногабаритные конструкции как вращающиеся печи с точностью до десятых долей миллиметра в реальных производственных условиях.

Читать еще:  Шум ремня при работе двигателя

Выверка оси вращения печи

Трубчатая, барабанная вращающаяся печь — промышленная печь цилиндрической формы с вращательным движением вокруг продольной оси. Предназначена для нагрева сыпучих материалов с целью их физико-химической обработки. Длина вращающейся печи достигает 200 метров, а диаметр 6,5 метров.

Обязательным условием нормальной работы вращающейся печи является соосность бандажей задающих положение ее оси вращения.

Несоосность бандажей печи даже в пределах допуска (2 мм) вызывает повышенный износ рабочих поверхностей бандажей и опорных роликов их подшипников и увеличивают расход энергии, затрачиваемой на вращение печи. Ускоряют разрушение огнеупорной футеровки, металлического корпуса и могут привести к аварийной остановке технологической линии.

Для контроля взаимного положения бандажей вращающейся печи специалистами ООО «Промышленная геодезия» применяется координатоопределяющая технология, обладающая большой гибкостью и позволяющая с высокой точностью определять геометрические характеристики крупных объектов сложной формы. Определение координат выполняется лазерными трекерами и высокоточными тахеометрами. Реализованные в этих приборах современные алгоритмы поиска и захвата визирной цели позволяют эффективно работать даже в условиях значительного воздействия конвекционных потоков воздуха от рядом расположенных работающих печей, что особенно важно в реальных производственных условиях.

Анализ пространственных координат точек, определенных на рабочих поверхностях ответственных механизмов печи, позволяет судить о взаимном их расположении и ориентации, а также контролировать величину регулировочного перемещения в режиме реального времени.

Анализ пространственных координат точек, определенных на рабочих поверхностях ответственных механизмов печи, позволяет судить о взаимном их расположении и ориентации, а также контролировать величину регулировочного перемещения в режиме реального времени.

Состав работ при обследовании вращающейся печи включает в себя:

  • Определение несоосности центров поперечных сечений бандажей
  • Для плавающих бандажей определение несоосности центров поперечных сечений подбандажных обечаек
  • Определение положения и ориентации осей вращения роликовых опор
  • Определение межцентренного расстояния шестерен венцовой пары
  • Определение неконцентричности венцовой шестерни и подвенцовой обечайки
  • Определение радиальных и осевых биений венцовой шестерни
  • Выработка рекомендаций по минимизации несоосности центров поперечных сечений бандажей с учетом последующих температурных расширений узлов и механизмов печи
  • Контроль процесса юстировки в режиме реального времени
  • Исполнительная съемка нового состояния корпуса печи
  • Выверка газогорелочного устройства

Выверка привода вращающейся печи

Для соблюдения нормативного срока службы и эффективности элементов привода вращающейся печи существенное значение имеет соблюдение номинальных параметров расположения и ориентации относительно оси печи, редуктора привода, промежуточного вала и подвенцовой шестерни.

Несоблюдение требований конструкторской документации приводит к повышенному износу и может стать причиной аварийной остановки печи.

Координатоопределяющая технология позволяет определить фактическое положение элементов привода печи в единой системе координат печи. После анализа этой информации возможно выработать рекомендации по минимизации непараллельности осей основных элементов привода оси вращения печи.

Состав работ при выверке привода вращающейся печи включает в себя:

  • Определение положения оси печи;
  • Определение межцентренного расстояния шестерен венцовой пары;
  • Определение неконцентричности венцовой шестерни и подвенцовой обечайки;
  • Определение радиальных и осевых биений венцовой шестерни;
  • Определение положения и ориентации оси подвенцовой шестерни относительно оси вращения печи;
  • Определение положения и ориентации оси тихоходного вала редуктора относительно оси вращения печи;
  • Определение положения и ориентации оси промежуточного вала;
  • Выработка рекомендаций по минимизации непаралельности осей основных элементов привода оси вращения печи;
  • Контроль процесса выверки в режиме реального времени;
  • Исполнительная съемка нового состояния привода печи.

Кроме статических наблюдений наши специалисты выполняют измерения в динамике.

Динамические измерения геометрических характеристик вращающейся печи

Динамическая методика определения геометрических характеристик элементов вращающихся печей позволяет выявлять проблемные места без остановки печи. Суть метода заключается в анализе результатов измерений расстояния до поверхности контролируемого элемента печи (бандажа, опорных роликов, венцовой и подвенцовой шестерен) предварительно закоординированными лазерными дальномерами. Измерения выполняются бесконтактно с частотой до 3 Гц и точностью 0,3-0,5 мм.

Анализ изменения расстояний измеренных отдельным дальномером позволяет оценить радиальные и осевые биения элементов, определить отклонения формы и эксцентриситет.

При наличии трех и более дальномеров производящих измерения синхронно, появляется возможность определить мгновенное положение центра поперечного сечения элемента в единой системе координат печи. При проведении измерений одновременно на нескольких бандажах появляется возможность получения реальной пространственной геометрии печи в рабочих условиях.

Выполняя регулярно подобное обследование или установив дальномеры постоянно, можно вовремя диагностировать недопустимые изменения геометрических характеристик корпуса и избежать связанных с этим аварийных остановок. Оригинальный статистический алгоритм разработанный Тюриным (доцентом Санкт-Петербургского государственного университета) позволяет разделить различные составляющие и выделить необходимые для анализа данные. Составленные на его основе программно-аппаратный комплекс может стать недорогим и надежным инструментом для специалистов подразделений выверки эксплуатирующих и ремонтных организаций.

Выверка положения заменяемых фрагментов обечайки

Важной задачей, способствующей скорейшему выводу печи из капитального ремонта, является контроль геометрии корпуса при замене обечаек.

Технология размерного контроля при стыковке обечаек включает в себя следующий состав работ:

  • Контроль геометрических характеристик новой обечайки
    • определение фактических диаметров сечений и отклонений от цилиндричности новой обечайки;
    • определение неперпендикулярности относительно оси и неплоскостности кромок новой обечайки.
  • Разметка линии реза корпуса
    • подробный замер исходной геометрии корпуса печи в районе замены обечайки — контроль нецилиндричности, определение диаметров и прямолинейности оси;
    • разбивка линий реза корпуса в соответствии с геометрическими характеристиками нового фрагмента обечайки;
    • контроль геометрии кромки после удаления старой обечайки.
  • Контроль положения новой обечайки на этапе стыковки
    Оригинальная технология проведения бесконтактных измерений позволяет определять текущее положение и ориентацию нового фрагмента обечайки при монтаже в режиме реального времени
    • контроль взаимного положения центров окружностей кромок корпуса и новой обечайки;
    • контроль ориентации новой обечайки относительно оси печи;
    • исполнительная съемка нового состояния корпуса печи.

Лазерное сканирование

Современные высокопроизводительные наземные сканирующие системы определяют положение сотен тысяч точек на поверхности обмеряемого объекта. Так, например, точность лазерного сканера Surphaser достигает 0,1-0,5 мм, что позволяет применять этот прибор для решения и метрологических задач.

Результатом измерений является облако точек, по которому можно проводить измерения необходимых элементов здания, коммуникаций и газопровода, а также его моделирование для дальнейшей реконструкции. При подготовке к проведению реконструкции мы предлагаем заказчику создание 3D модели реконструируемого участка.

При сканировании корпуса печи появляется возможность составить детальную картограмму нецилиндричности обечайки. Выявить локальные участки деформаций корпуса и принять обоснованное решение об их исправлении для улучшения условий укладки футеровки.

  • Облако точек на поверхности обечайки, бандажа и роликов опор

Определение объемов сыпучих материалов на складе

Оперативное определение объемов сыпучих материалов на складе — актуальная задача, которая может быть решена с применением современных сканирующих систем.

Лазерное сканирование дневной поверхности склада выполняется без остановки его работы. Для этого применяется специальная измерительная оснастка позволяющая разместить лазерный сканер рациональным образом и проводить измерения за минимальное время. Полученное облако точек обрабатывается в программе ScanIMAGER.

На точечную модель дневной поверхности склада накладывается регулярная сетка вертикальных сечений с заданным шагом.

Зная геометрические характеристики подстилающей поверхности насыпи, можно вычислить ее объем. Отличительной особенностью алгоритма вычисления объема в программе ScanIMAGER является отсутствие необходимости построения триангуляционной модели — регулярная сетка накладывается на облако точек — точечную модель, без какой либо дополнительной обработки что повышает оперативность получения результата. На основе этого алгоритма могут функционировать стационарные, автоматические системы мониторинга.

Кроме разработки оригинальных измерительных технологий мы предлагаем своим заказчикам сервисную и методическую поддержку при поставке измерительного оборудования и специализированной измерительной оснастки. Мы готовы предложить наш опыт в области промышленной метрологии для решения Ваших производственных задач как при выполнении разовых и регулярных работ, так и при поставке измерительного оборудования, обучении специалистов подразделений выверки.

  • Склад клинкера
  • Точечная модель дневной поверхности склада клинкера
  • Регулярная сетка на дневной поверхности насыпи склада клинкера
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector